
Your Name (first last) SID

EECS 151/251A Fall 2020 Midterm 1
October 6, 2020

Question 1 2 3 4 5 Total

Sugg. time (mins) 15 15 15 20 15 80

Max. points 15 15 16 18 16 80

Exam Notes:

Between 3:30pm PST and 3:40pm PST, you may set up your recording, print the exam or transfer
it to another device as needed, etc., but you may NOT begin working.

You have 80 minutes to work, starting at 3:40pm PST and ending at 5:00pm PST.

Please keep the Google Doc page that you received at 3:30pm PST open during the exam. It
contains the following information:

1. A link to the exam PDF

2. A form for exam questions and reporting technical difficulties

3. A form for your exam recording link

4. Gradescope submission link

5. Exam errata

6. Summary of exam steps

EECS 151/251A Fall 2020 Midterm 1 2

Problem 1: It’s all logical... [15 points, 15 minutes]

(a) Given F = (ā + c)b + cd̄, use De Morgan’s law to derive F̄ . Write the equation in product-
of-sums form.

(b) Use a K-map to simplify the following expression and leave in product-of-sums form:

F = b̄d + bc̄d̄ + abc̄d̄ + abcd̄

Your expression should have no more than 5 terms. Include the K-map in your solution.

(c) How many unique truth tables are there with m inputs and n outputs?

Answer:

EECS 151/251A Fall 2020 Midterm 1 3

Solution:

1. F̄ = abc̄ + cd̄
= (abc̄)(cd̄)
= (ā + b̄ + c)(c̄ + d)

2. (b + d)(b̄ + d̄)(a + b̄ + c̄)
Other kmaps, groupings and expressions are possible.

3. There are 2m rows in a truth table of m inputs. Each row has 2n possible values. So
there are (2n)(2m) combinational logic circuits in total.

EECS 151/251A Fall 2020 Midterm 1 4

Problem 2: VERIfiably LOGical [15 points, 15 minutes]
Consider the following Verilog module:

module my_module(
input clk, load,
input [2:0] in,
output reg [2:0] out

);
always @(posedge clk) begin

if (load) out <= in;
else begin

out[0] = ~out[0];
if (out[0])

out[1] <= ~out[1];
if (out[0] & out[1])

out[2] <= ~out[2];
end

end
endmodule

(a) Draw the circuit diagram for this design. You may use the module inputs (e.g. in[0]),
constants, muxes, inverters, and/or 2-input logic gates.

EECS 151/251A Fall 2020 Midterm 1 5

(b) Say we load 3’b011 using our load and in input signals. We then deassert load. What is the
value of out for the first 6 cycles?

Cycle out

0 011

1

2

3

4

5

EECS 151/251A Fall 2020 Midterm 1 6

Now, consider this similar module:

module my_module(
input clk, load,
input [2:0] in,
output reg [2:0] out

);
always @(posedge clk) begin

if (load) out = in;
else begin

out[0] = ~out[0];
if (out[0])

out[1] = ~out[1];
if (out[0] & out[1])

out[2] = ~out[2];
end

end
endmodule

(c) Say we load 3’b011 again using our load and in input signals. What is the value of out for
the first 6 cycles?

Cycle out

0 011

1

2

3

4

5

EECS 151/251A Fall 2020 Midterm 1 7

Solution:
(a) During the exam, a clarification was made that all assignments in this part were meant

to be non-blocking. However, credit was awarded for those who solved the question as
written.
Here is the circuit diagram for the corrected (non-blocking) code:

The code as written produces a slightly different circuit (assume the rest of the circuit is
the same as in the previous diagram).

(b) With the corrected code (all assignments non-blocking), this Verilog describes a counter.

Cycle out

0 011

1 100

2 101

3 110

4 111

5 000

EECS 151/251A Fall 2020 Midterm 1 8

As written (out[0] = ~out[0]):

Cycle out

0 011

1 010

2 101

3 100

4 111

5 110

(c) With all assignments blocking, the module now describes a downward counter.

Cycle out

0 011

1 010

2 001

3 000

4 111

5 110

EECS 151/251A Fall 2020 Midterm 1 9

Problem 3: State of the Machine [16 points, 15 minutes]

Pleased with your work on the charger and battery system from HW1, 151Laptops & Co. has
decided to enlist your help once again. You are tasked with building a Mealy-type FSM for managing
the laptop’s clock frequency depending on load and temperature. The requirements are as follows:

1. Input: The FSM has two 1-bit inputs (temperature and load), that are asynchronous to the
clock controlling the FSM (clk). These can be concatenated into a 2-bit value {temperature,
load} (temperature is the leftmost bit).

(a) For temperature a value of 1’b0 represents COOL, a value of 1’b1 represents HOT.
(b) For load a value of 1’b0 represents IDLE, a value of 1’b1 represents BUSY.

COOL & IDLE COOL & BUSY HOT & IDLE HOT & BUSY

2’b00 2’b01 2’b10 2’b11

2. Output: The FSM has a 2-bit output indicating the frequency that should be used. 2’b00 is
the slowest clock and 2’b11 is the fastest clock.

SLOW NORMAL FAST BOOST

2’b00 2’b01 2’b10 2’b11

3. A useful quantity in thinking about this FSM is the previous output.

(a) Previous output at any time is defined as the value of the output sampled just before
the most recent posedge clk.

(b) Previous output is initially NORMAL.

4. In the following scenarios, the output frequency will be dropped to one-level lower than the
previous output, unless the previous output is already SLOW:

(a) If the temperature is HOT, or
(b) If the load is IDLE

5. In the following scenario, the output frequency will be increased to one-level higher than the
previous output, unless the previous output is already BOOST:

(a) If temperature is COOL and load is BUSY

EECS 151/251A Fall 2020 Midterm 1 10

(a) Demonstrate your understanding: Fill in the waveform with the values of output and
previous output. If you are doing this on a separate paper, it is acceptable to draw only
output and previous output so long as you label your axis clearly and mark time.

EECS 151/251A Fall 2020 Midterm 1 11

(b) Design it: Draw the state-transition diagram for your Mealy machine. You may use asterisks
(*) to represent "don’t care" values: an input of 2’b1* would indicate temperature=HOT and
load is anything.

EECS 151/251A Fall 2020 Midterm 1 12

Solution:
(a) Demonstrate your understanding: Fill in the waveform with values of the output

(b) Design it: Draw the state-transition diagram for your mealy machine. You may use as-
terisks (*) to represent "don’t care": an input of 2’b1* would indicate temperature=HOT
and load is anything.

EECS 151/251A Fall 2020 Midterm 1 13

EECS 151/251A Fall 2020 Midterm 1 14

Problem 4: Follow the Instructions [18 points, 20 minutes]

You may refer to the RISC-V Green Card on the last pages of this exam.

(a) RISC-V assembly defines a set of standard pseudo-instructions that can be implemented with
the base RV32I instructions. Out of the branching pseudo-instructions, select the ones that
can be implemented with a single blt (branch less than) instruction.

� beqz rs, offset (Branch if = 0)

� bnez rs, offset (Branch if 6= 0)

� blez rs, offset (Branch if ≤ 0)

� bgez rs, offset (Branch if ≥ 0)

� bltz rs, offset (Branch if < 0)

� bgtz rs, offset (Branch if > 0)

� bgt rs, rt, offset (Branch if rs > rt)

� ble rs, rt, offset (Branch if rs ≤ rt)

� bgtu rs, rt, offset (Branch if rs > rt, unsigned)

� bleu rs, rt, offset (Branch if rs ≤ rt, unsigned)

Solution:
bltz, bgtz, and bgt

(b) JALR (jump and link register) uses 12 bits of the immediate, meaning we can only jump to
an offset of within 211 or 2KiB from the base address. Give the combination of 2 instructions
that would allow us to jump to:

(i) A "PC-absolute" address, i.e. a PC address specified by an absolute 32-bit constant

(ii) A "PC-relative" address, i.e. a PC address specified by a 32-bit offset from the current
PC

EECS 151/251A Fall 2020 Midterm 1 15

Solution:
(i) LUI + JALR
(ii) AUIPC + JALR

(c) Notice how imm[0] is discarded (always 0) in B-type instructions. Select all statements below
that are TRUE for this ISA design choice.

� This explains the difference between S-type and B-type instruction formats.

� The branch target offset range is ±212 = ±4096 instructions.

� An ISA extension with only 16 integer registers prohibits also discarding imm[1].

� An ISA extension with 16-bit instructions prohibits also discarding imm[1].

Solution:
Choices #1 and #4
#2: bytes, not instructions
#3: doesn’t change instruction length of 32 bits (4 byte increments could allow for lower
2 bits to be discarded)

(d) Based on (c), the JALR instruction could theoretically also discard imm[0]. Select all state-
ments below that would be TRUE if a modified JALR also discarded imm[0].

� imm[12] would become redundant based on part (b).

� This modified JALR could be encoded as a B-type instruction.

� The jump target address range would be expanded by 2× without being invalid.

� The jump target address of this modified JALR alone would have the same range as
regular JAL, which also discards imm[0].

Solution:
Choices #1 and #3
#2 would have useless rs2 field that takes away imm bits
#4 cannot because JAL has much larger range (J-type inst.)

(e) Below is the encoding of the "C" (compressed, 16-bit instruction) RISC-V extension. Select all
statements below that are TRUE based on the encoding of the fields across the formats.

EECS 151/251A Fall 2020 Midterm 1 16

Format Meaning 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CR Register funct4 rd/rs1 rs2 op
CI Immediate funct3 imm rd/rs1 imm op
CSS Stack-relative Store funct3 imm rs2 op
CIW Wide Immediate funct3 imm rd ′ op
CL Load funct3 imm rs1 ′ imm rd ′ op
CS Store funct3 imm rs1 ′ imm rs2 ′ op
CA Arithmetic funct6 rd ′/rs1 ′ funct2 rs2 ′ op
CB Branch/Arithmetic funct3 offset rd ′/rs1 ′ offset op
CJ Jump funct3 jump target op

� An arithmetic instruction result must overwrite one operand register in the register file.

� Only 8 integer registers are available for all compressed instructions.

� Jumping to absolute/relative 32-bit addresses is not possible with 2 compressed instruc-
tions like in part (b).

� Branching instructions (CB format) can only compare against 0, not between 2 registers.

Solution:
Choices #1, #3, and #4
#2 is false for CR, CI, and CSS format compressed instructions

EECS 151/251A Fall 2020 Midterm 1 17

Problem 5: Datapathology [16 points, 15 minutes]

You may refer to the RISC-V Green Card on the last pages of this exam.

+4

Add

addr
inst

IMEM

pc+4

wb

pcwb

Inst[24:20]
ALU
+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu

Reg[rs1]

Reg[rs2]

Inst[31:0]

Control logic

RegWEn ALUSel

Asel

MemRW

0

1

Imm[31:0]
Imm.
Gen

Add

clk

addr
inst

IMEM DMEM

addr
DataR

DataW

LD
X

PC

Inst
[31:7] clk

WBSel

Branch
Comp

1

0

ImmSel

1

0

PCSel BrUn

BrEq

BrLT

Control logic

Bsel

mem

alu

alu

LdX

1

0

The single-cycle datapath above implements a subset of the RV32I instruction set.

(a) Datapath functionality: The Verilog code for an incomplete ALU is given below:

wire signed [31:0] in1s, in2s;
assign in1s = in1;
assign in2s = in2;
always @(*) begin

case (ALUSel)
ADD: alu = in1 + in2;
SUB: alu = in1 - in2;
SHIFT_LEFT: alu = in1 << in2[4:0];
LESS_THAN_S: alu = (in1s < in2s) ? 32'b1 : 32'b0;
SHIFT_RIGHT: alu = in1 >> in2[4:0];
OR: alu = in1 | in2;
AND: alu = in1 & in2;
PASS: alu = in2;

endcase
end

Select all instructions below that are supported by the given datapath diagram and the given
ALU module:

� LUI rd, imm

� AUIPC rd, imm

� BLT rs1, rs2, imm

EECS 151/251A Fall 2020 Midterm 1 18

� JALR rd, rs1, imm

� LW rd, rs1, imm

� SLTU rd, rs1, rs2

� SRL rd, rs1, rs2

� SRA rd, rs1, rs2

� XOR rd, rs1, rs2

� AND rd, rs1, rs2

Solution:
LUI, AUIPC, BLT, LW, SRL, AND
There’s no writeback datapath for current address in JALR.
SLT is supported but not SLTU.
SRL is supported but not SRA.
There’s no XOR in ALU case.

(b) New instruction: In homework 4, we implement ReLU (defined as y = max(0, x)) as an
R-type instruction:

relu rd, rs1, rs2

where rs2 is a constant 0 (register x0). We use the branch comparator output to extend the
control logic while keeping the ALU in the datapath untouched:

// Part of the control logic module
always @(*) begin

ALUSel = ADD; // default
if (opcode == OP || opcode == OP-IMM) begin
// general instructions
end
else if (opcode == CUSTOM-0) begin

ALUSel = BrLT ? AND : OR; // x and 0 = 0, x or 0 = x
end

end

Based on this design, now we would like to implement a new R-type instruction, noisy ReLU.
Noisy ReLU includes Gaussian noise: y = max(0, x + xnoise). Assume register x1 stores x,
register x2 stores xnoise, and we want x3 to have y. noisyrelu x3, x1, x2 is equivalent to
the following instructions:

add x4, x1, x2
relu x3, x4, x0

EECS 151/251A Fall 2020 Midterm 1 19

Your Task: How would you modify the datapath to accommodate this instruction? Please
draw on the datapath below and label any new control signal you want to use. Try to add as
little hardware as possible. Available components (muxes, adders, constants, logic gates) are
given below the datapath. Please also explain your design briefly. (If you are doing this on
a blank paper, you only need to draw the necessary surroundings so that we can understand
you)

Available components:

EECS 151/251A Fall 2020 Midterm 1 20

Solution:
Branch_Comp_input_1 = (NoisyReLU) ? DataA + DataB : DataA;
Branch_Comp_input_2 = (NoisyReLU) ? 32'b0 : DataB;

These signals also go to the input of ALU.

EECS 151/251A Fall 2020 Midterm 1 21

(c) Timing: The write ports of Register File (RF) and Data Memory (DMEM) are synchro-
nized. Your teammate suggests two timing schemes:

(1) Both writing ports are triggered by the negative edge of clock.
(2) Both writing ports are triggered by the positive edge of clock.

PC is still updated at the rising edge of clock for both. Will they work properly? Which
method do you prefer? Please explain the reason.

Solution:
Both work. For (1), IF, ID, EX have to fit in half clock cycle, while (2) can use the full
clock cycle. For (2), MA for save instructions and WB actually happen in the next cycle,
but asynchronous read can guarantee the correctness. Option (2) can clock faster and is
preferred.

EECS 151/251A Fall 2020 Midterm 1 22

Spare page. Will not be graded. Feel free to tear off and use for scratch work.

	It's all logical... [15 points, 15 minutes]
	VERIfiably LOGical [15 points, 15 minutes]
	State of the Machine [16 points, 15 minutes]
	Follow the Instructions [18 points, 20 minutes]
	Datapathology [16 points, 15 minutes]

