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Problem 1: FSMs (Midterm 1 Clobber) [12 pts, 10 mins]

From your input in Midterm 2, 151Laptops & Co. has decided to use a 2-core processor in their
next generation of laptops. Now they need your help designing the cache controller. Each core will
have its own L1 cache, but both cores will share an L2. Specifically, you need to design an arbiter
FSM that will take requests from each L1 cache and grant L2 access to one cache per cycle.
The details of the FSM’s behavior are as follows:

• The FSM is a MEALY machine.

• The FSM has 2 bits of input, where the nth bit denotes a request from the nth core’s L1.
eg) an input of 2b’01 denotes a request from cache 0.

• The FSM has 2 bits of output, where the nth bit denotes a grant to the nth core’s L1.
eg) an output of 2b’10 denotes a grant to cache 1.

• Initially, the FSM should prioritize requests from cache 0.

• If there are no outstanding requests, the FSM should output 0.

• If there are outstanding requests the FSM must grant exactly 1 request.

• If there are multiple outstanding requests, the FSM should prioritize the cache with the least
recent grant.

a) Demonstrate your understanding: Fill in the table with values of output given the se-
quence of requests.

Solution:

Cycle Requests Output

0 00 00

1 11 01

2 11 10

3 01 01

4 00 00

5 11 10

b) Design it: Draw the state-transition diagram for your Mealy machine. Indicate the initial
state. You may use asterisks, with caution, to represent "don’t care" values: an input of 2’b*1
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indicates both 2’b01 and 2’b11. Let the state be a 1-bit value indicating the cache with the
most recent grant.

State 0 1

Most recent grant $0 $1

Solution:

c) Boolean logic: Write out the logic equation for each bit of output in product-of-sums form
in terms of in[1:0] and state

out[0] =

out[1] =

Solution:

out[0] = (in[0])(state+ in[1])

out[1] = (in[1])(state+ in[0])
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Problem 2: Verilog (Midterm 1 Clobber) [12 pts, 10 mins]

Now that our cache controller is ready, let’s build the CPU! We’ll instantiate the modules core,
containing a CPU core and its L1 cache, fsm, the FSM we just designed, and l2_cache, the unified
L2 cache. We will implement the ability for each core’s L1 cache to read in data from the L2 cache.
Some additional details:

• The processor has 2 cores.

• Each core’s L1 cache holds req high and addr to the requested address while a read request
is outstanding. When the arbiter grants its request, the input ack should be set high.

• The L2 cache has a 1-cycle read latency. This means that if we set rd_en to 1 and addr to
0x10000000 in cycle 0, data has the data corresponding to memory address 0x10000000 in
cycle 1.

• Each core also has an L1 cache write enable signal, wr_en. This should be asserted on the
rising edge where the correct L2 read data is available. You can assume that the core knows
the correct write address.

• We ignore memory writes (we only handle reads). We also ignore L2 cache misses.

• The $clog2 function may come in handy.

On the next page, fill in the blanks to finish implementing the top level of the CPU.
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module CPU_Top (
input clk, rst
);

wire [1:0] fsm_input;
wire [1:0] fsm_output;
wire [31:0] data;
wire [31:0] addr [1:0];

reg [1:0] seq_element;
always @( ___(1)___ ) begin

if (rst) seq_element <= 0;
else begin

___(2)___ ;
end

end

genvar i;
generate for ( ___(3)___ ) begin: loop

core gen_core (
.clk(clk), .rst(rst),
.wr_en( ___(4)___ ), // input
.data(data), // input [31:0]
.ack( ___(5)___ ), // input
.req( ___(6)___ ), // output
.addr(addr[i]) // output [31:0]

);
endgenerate

fsm l1_l2_arbiter (
.clk(clk), .rst(rst),
.in(fsm_input), // input [1:0]
.out(fsm_output) // output [1:0]

);

l2_cache l2 (
.clk(clk), .rst(rst),
.rd_en( ___(7)___ ), // input
.addr( ___(8)___ ), // input [31:0]
.data(data) // output [31:0]

);

endmodule

1.

2.

3.

4.

5.

6.

7.

8.
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Solution:
module CPU_Top (

input clk, rst
);

wire [1:0] fsm_input;
wire [1:0] fsm_output;
wire [31:0] data;
wire [31:0] addr [1:0];

reg [1:0] seq_element;
always @(posedge clk) begin

seq_element <= fsm_output;
end

genvar i;
generate for ( i = 0; i < 2; i = i+1 ) begin: loop

core gen_core (
.clk(clk), .rst(rst),
.wr_en(seq_element[i] ), // input
.data(data), // input [31:0]
.ack(fsm_output[i]), // input
.req(fsm_input[i]), // output
.addr(addr[i]) // output [31:0]

);
endgenerate

fsm l1_l2_arbiter (
.clk(clk), .rst(rst),
.in(fsm_input), // input [1:0]
.out(fsm_output) // output [1:0]

);

l2_cache l2 (
.clk(clk), .rst(rst),
.rd_en(fsm_output != 0), // input
.addr(addr[$clog2(fsm_output)]), // input [31:0]
.data(data) // output [31:0]

);

endmodule
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Problem 3: RISC-V (Midterm 1 Clobber) [24 pts, 22 mins]

a)

Figure 1: Correct single stage RISC-V datapath & control

Figure 2: Buggy PC mux

After implementing the 2-core processor, we move on to testing it. Based on the testbench behav-
iors, we suspect that the PCSel mux has its 0 and 1 inputs switched.
Figure 1 shows the correct datapath behavior: PCSel == 0 selects pc + 4 and PCSel == 1 selects
the alu output.
Figure 2 shows the incorrect pc mux: PCSel == 0 selects the alu output and PCSel == 1 selects
pc + 4.
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Assuming the rest of the datapath and control are implemented correctly, and the PC mux has its
inputs switched, step through the following assembly code. Fill in the table below. If pc > 0x20,
write pc = z and stop.
Write down the values of the specified registers after the assembly code has been executed. All
immediates are in decimal.

0x0 li x10, 4
0x4 addi x11, x10, 16
0x8 beq x10, x0, 8
0xc sw x11, 40(x10)
0x10 li x12, 32
0x14 blt x10, x11, 8
0x18 addi, x11, x10, 4
0x1c slt x10, x10, x11
0x20 jal, x12, -4

cycle 1 2 3 4 5 6 7 8 9 10

pc 0x0

x10 = ___

x11 = ___

x12 = ___
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b) Next, 151Laptops & Co. wants to add a storeReLUN instruction which stores the max of x
(pre-loaded to rs1) and n(pre-loaded to rs2) to the address in rd:

storeReLUN rd, rs1, rs2: mem[R[rd]] = max(R[rs1], R[rs2])

To enable this instruction, we need extra hardware on the datapath. As shown in figure 3, an extra
DataRd output port is added to the RegFile. A 2-input mux is added before the DMEM addr port,
and a 2-input mux is added before the DMEM DataW port.
Write down each mux’s inputs and control signal. You are allowed to use all signals in Figure 3,
except for the dataWSel and addrSel, which you are asked to define. The opcode of storeReLUN
is a parameter CUSTOM-1.

Figure 3: Modified single stage RISC-V datapath & control

addr mux input 0 = ___
addr mux input 1 = ___
addrSel = ____________

DataW mux input 0 = ___
DataW mux input 1 = ___
dataWSel = ____________

Solution:
a)
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cycle 1 2 3 4 5 6 7 8 9 10

pc 0x0 0x4 0x14 0x18 0x8 0x10 0x20 z z z

x10 = 4
x11 = 8
x12 = 36

b) addr mux input 0 = alu
addr mux input 1 = R[rd]
addrSel = inst[6:0] == CUSTOM-1

DataW mux input 0 = R[rs2]
DataW mux input 1 = R[rs1]
dataWSel = !BrLT && (inst[6:0] == CUSTOM-1)
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Problem 4: Pipelining (Midterm 2 Clobber) [18 pts, 20 mins]

Consider a 4-stage pipeline as shown below. Both instruction memory and data memory are
combinational read and write. The register file is also combinational, and read-after-write in the
same cycle is permitted. Only consider the explicit forwarding path (dashed lines) in the diagram.

pc+4

ALU

Reg [ ]

AddrB

AddrA

DataA

DataB

AddrD

DataD

addr inst

IMEM
DMEM

addr
DataR

DataWclk

PC

1

0

2

alu

Instruction Fetch
(F)

Instruction Decode + ALU Execute
(D + X)

Memory Access
(M)

Write 
Back (W)

Imm.
Gen

+4+4

1
0

Branch
Comp.

Figure 4: 4-stage pipeline with incomplete forwarding path

a) For each individual assembly code below, how many stalls (NOPs) will be inserted? No
branching strategy is used in this part (always stall).

i) Number of stalls between 1 and 2:
1 add x3, x1, x2
2 and x4, x1, x3

ii) Number of stalls between 2 and 3:
1 add x3, x1, x2
2 xor x4, x1, x2
3 sub x5, x1, x3

iii) Number of stalls between 1 and 2:
1 add x3, x1, x2
2 blt x1, x3, Label1

iv) Number of stalls between 1 and 2:
1 lw x3, imm1(x1)
2 sw x2, imm1(x3)
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v) Number of stalls after 1:
1 jalr x3, x1, imm2 # R[x1] + imm2 -> Label2
2 ...
3 Label2:addi x4, x3, 1

vi) Number of stalls after 1:
1 bne x3, x1, Label3 # R[x3] = 2, R[x1] = 1
2 ...
3 Label3:addi x4, x3, 1

Solution:
0; 0; 1; 1; 2; 2

i) This is handled by the forwarding path.
ii) x3 can be read after write in the D+X stage. No stall is needed.
iii) The inputs of branch comparator are not forwarded. Still need 1 stall.
iv) Need to wait 1 more cycle to get x3.
v) The address is connecting to the PC register, and will be available at the end of M

stage.
vi) Same as above.

b) For each statement below, evaluate it as true (T) or false (F).

i) If the register file is asynchronous read, synchronous write, we can remove the
explicit registers between the memory access stage and the writeback stage, and the
functionality remains the same as before.

ii) For the existing forwarding path, forwarding to the output of register file (instead
of the input of ALU) can help eliminate some stalls we identified in part a), without
increasing the critical path.

iii) If the critical path is located in the memory access stage, adding a forwarding
path to solve memory-to-memory data hazard (e.g. sw after lw) will not increase the
critical path.

iv) If the critical path is located in the memory access stage, adding one more stage
to form a 5-stage pipeline (F, D, X, M, W) can help increase the clock speed.

v) For B-format instructions, if we assume branch always taken, we don’t need extra
hardware to avoid injecting stalls.

vi) If a program takes time N by an 1-instruction per cycle datapath, it cannot
be finished by an M-stage pipeline in time N/M, even if we have eliminated all stalls.
Assume the maximum performance for both.

Solution:
T; T; F; F; F; T

i) This is equal to moving the registers "into" the register file.
ii) The new forwarding path can handle iii) in a), and the critical path will not be
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longer than the second stage.
iii) The critical path will increase, since we are adding more components (ALU, muxes)

to the critical path.
iv) Pipelining the non-critical path cannot improve the performance.
v) We need extra hardware in F stage to calculate the new address
vi) Unless each stage has exactly the same critical path, which is not possible in real

world.
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Problem 5: Path Delay (Midterm 2 Clobber) [18 pts, 20 mins]

Figure 5: Path delay circuit

a) The circuit above is implemented in a process where Rn = Rp and γ = 1. The inverter has an
input capacitance of 1. Cout = 9Cin. Coffpath = 1

2C3. Size the gates using logical effort to minimize
the path delay. Show your work.

b) What is the minimized path delay?

Solution:
a)
G = 1 · 2 · 3

2 ·
3
2 · 2 = 9

B = 1 · 1 · 3
2 · 2 · 1 = 3

F = 9
H = 9 · 9 · 3 = 243
EF = 5√243 = 3
C4 = 9 · 1

3 · 2 = 6
C3 = 2 · 6 · 1

3 ·
3
2 = 6

C2 = 3
2 · 6 ·

1
3 · 2 = 9

2
C1 = 9

2 ·
1
3 · 1 = 3

b)
minimized path delay = 5 · EF + Σpi = 15 + (1 + 3 + 2 + 2 + 3) = 26
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Problem 6: Elmore Delay (Midterm 2 Clobber) [18 pts, 20 mins]

In this problem, we will analyze the delay of the following unidentified circuit.

a) Draw the equivalent RC switch model for the circuit in the figure above for signals X and Y
(you may ignore S). Label the values of resistors and capacitors using the following assump-
tions:

• Wire 1 has a resistance of Rw and parasitic capacitance 2Cw

• Inverters have input capacitance Ci, parasitic capacitance 2Ci, and output resistance Ri

• NAND gates have input capacitance 2Ci, parasitic capacitance 4Ci, and output resis-
tance Ri

Solution:
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b) If S has been held at a value of 1 for a long time, what is the propagation delay from the
inputs to the output? You may assume that X and Y arrive at the same time and are driven
by sources with 0 time constant. Hint: What is this circuit doing?

Solution:
The mystery circuit is a 2-to-1 logic gate multiplexer. If we look at the logic of this
circuit, when S is 1 the output will have the same value as X regardless of Y. So we are
interested in the delay from X to output.
The signal from X travels through 3 sections.
τ1 = Rw ∗ (Cw + 2 ∗ Ci)
τ2 = Ri ∗ (4 ∗ Ci + 3 ∗ Cw) + (Ri + 3 ∗Rw)(3 ∗ Cw + 2 ∗ Ci)
τ3 = Ri ∗ (4 ∗ Ci + Cw) + (Ri +Rw)(Cw + 10 ∗ Ci)

delay = ln(2) ∗ (τ1 + τ2 + τ3) = ln(2)(11 ∗RwCw + 18 ∗RwCi + 8 ∗RiCw + 20 ∗RiCi)



EECS 151/251A Fall 2020 Final 17

Problem 7: Arithmetic [12/18 pts, 20 mins]

Let’s explore various ways to build an 8 × 8 bit unsigned multiplier. The following delays will be
used in your delay expressions and are visualized below:

• tpp: The delay of partial product generation (AND gate).

• tF A: The delay of a full adder. For simplification, assume the carry and sum calculation have
the same delay.

• tpg: The delay of calculating the bitwise or group propagate and/or generate in a tree adder.
Assume the delay is unaffected by fanout in a prefix tree.

Figure 6: tpp and tF A

Figure 7: tpg

Figure 8: 4 x 4 CSA Array Multiplier
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a) Let’s start with a low-performance multiplier. Derive an expression the maximum delay of
an 8 x 8 CSA array multiplier with a ripple-carry final adder. A 4 x 4 CSA array multiplier
from lecture is shown in Fig. 8 for reference. If we pipeline the multiplier between the CSA
array and final adder, which part has a longer critical path?

Solution:
The structure is a 8x8 CSA array followed by a 7-bit ripple-carry adder and the critical
path is the carry rippling through the CSA array, then the carry rippling through the
ripple-carry adder. The delay is: tpp + 8tF A + 7tF A

If pipelined, the CSA array would have the longer critical path since an AND gate
practically has less delay than a full adder.
It is also safe to assume that the full adder accepted P G as inputs, so solutions with a
single tpg added to the adder term are also accepted.
It is also correct to realize that the first row of an array multiplier can add the first 3
partial products together. This reduces the number of rows in the array by 2 to get
tpp + 6tF A + 7tF A. In this case, the ripple-carry adder has the longer critical path.

b) Carry-bypass adders significantly reduce delay compared to ripple-carry adders at the expense
of just a bit more hardware. If we break up our ripple-carry final adder into a carry-bypass
adder grouped by 4 bits, name the 2 types of logic gates that are added, a concise description
of their function, and the quantity of each.

Solution:
A 7-bit carry-bypass adder broken into groups of 4 would have 2 groups, one with 4 bits
and the other with 3 bits. This problem was primarily looking for these 2 gates:

• AND to calculate bypass =
∏
Pi

• MUX to select generated carry or carry bypass

However, the problem did not state the assumption that the bitwise propagate/generate
Pi and Gi was available in the full adder, so these are also valid gates that are added:

• XOR to calculate Pi = Ai ⊕Bi (OR approximation is also valid: Pi = Ai +Bi)
• AND to calculate Gi = AiBi

Hence, credit is given for any two of these rows:

Logic gate Function Quantity

MUX carry bypassing 2

AND bypass =
∏
Pi ; Gi = AiBi ***see note

XOR (OR) Pi = Ai ⊕Bi (Pi = Ai +Bi) 7

***This could be any of:

• one 3-input AND + one 4-input AND for bypass (or 2 4-input)
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• 5 2-input ANDs for bypass
• 7 2-input ANDs for bitwise generates
• 12 2-input ANDs for bypass + bitwise generates

c) (251A only) We can use a Wallace Tree and final parallel prefix tree adder for higher
performance. A reference 4 x 4 Wallace Tree multiplier from lecture is shown below.

Figure 9: 4 x 4 Wallace Tree Multiplier

i) Derive an expression for the delay through an 8 x 8 Wallace Tree multiplier with 3:2
compression and a radix-2 Kogge-Stone final adder. You may leave the expression in
terms of log(...)N . Assume the parameter α for the Wallace tree as given in lecture is 1
and the half adder delay is equal to tF A.

ii) If we use radix-4 Booth recoding, describe concisely how the overall multiplier area and
delay changes.

iii) If we use a radix-4 Kogge-Stone final adder, describe concisely what the area/delay
tradeoff is for group P/G calculation.

Solution:
i) Wallace tree: tpp + ceil(log3/2N/2) · tF A where N = 8

Kogge-Stone: tpg + ceil(log2(N − 1)) · tpg + tF A where N = 15
Total delay is the sum of the above terms.
Note: credit also given for a 16-bit final adder or log3/28 term for Wallace Tree since
that was given in lecture.

ii) Radix-4 Booth recoding reduces the number of partial products by about 2 (down
to ceil(8+1

2 ) = 5 partial products to be exact) with signed partial product accumu-
lation. This reduces partial product HA/FA area, but incurs an area overhead from
the recoding logic. This also reduces the delay of the Wallace Tree to be roughly
equal to the final adder (reducing the critical path length in a pipelined case), even
when factoring the delay overhead of recoding logic.

iii) A Radix-4 adder reduces the number of stages of group P/G calculation by a factor
of 2, but each calculation block has larger delay because they take in 4 P/G groups
as input.
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Problem 8: Flip-Flop Timing [24 pts, 24 mins]

In this problem, you are asked to perform setup and hold timing analyses. Consider the circuit
given in the diagram. Each flip-flop has a clock-to-q delay of tclk−q = 80ps, setup time of tsu = 40ps,
hold time of th = 60ps.
Note: you do not need to consider any specific instruction in this problem.

IMEM

t1,max=600ps
t1,min=500ps

Decode

t2,max=80ps
t2,min=30ps

RF

t3,max=250ps
t3,min=200ps

ALU

t4,max=400ps
t4,min=50ps

DMEM(Read)

t6,max=450ps
t6,min=400ps

DMEM(Write)

t5,max=650ps
t5,min=550ps

t7=10ps

clk0 clk1 clk2 clk3

skew1

clk0 skew2

skew3

clk1

clk2

clk3

Figure 10: Circuit for setup/hold time analyses

a) Assume there is no skew and jitter between the clocks. What is the minimum clock period this
circuit can operate with? Is there any hold time violation? Denote your hold time analysis
in terms of hold slacks, where a negative slack would mean a violation.

Tclk = ps

Hold Slack = ps

Solution:

Tclk > tclk−q + tmax + tsu

Tclk = 80ps+ 680ps+ 40ps = 800ps
Hold Slack = tclk−q + tcrit,min − th

= 80ps+ 10ps− 60ps
= 30ps
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b) Now, if the circuit operates at Tclk = 820ps, and we have tskew1 = 20ps, tskew2 = −10ps,
tskew3 = 10ps. Instead of being a certain value, the cycle-to-cycle tclk−q of each flip-flop
presents a random distribution between 70ps and 90ps. Assume there is no clock jitter.
Denote your timing analysis in terms of setup and hold slacks, where a negative slack would
mean a violation.

Setup Slack = ps

Hold Slack = ps

Solution:
With some analyses (no need to show this work), you should find the critical path starts
from clk1 and ends at clk2:

Setup Slack = Tclk + tskew1,2 − (tclk−q,max + tcrit,max + tsu)
= 820ps− 30ps− (90ps+ 650ps+ 40ps)
= 10ps

Critical path for hold time starts from clk2 and ends at clk3:

Hold Slack = tclk−q,min + tcrit,min − tskew2,3 − th
= 70ps+ 10ps− 20ps− 60ps
= 0ps

c) If you are free to set the value of tskew1 and tskew2, what value will you use so that the circuit
can operate at minimum clock period without any violation? What is the optimum hold time
slack under this clock period? (i.e. You should achieve the minimum clock period first, then
try to maximize the hold time slack without increasing the clock period) Assume no clock
jitter and use tclk−q = 80ps in this part.

Skew1 = ps

Skew2 = ps

Tclk = ps

Hold Slack = ps

Solution:
Since there’s no skew between clk0 and clk3, the circuit actually has 3 loop boundaries:
1) clk0 - clk1 - clk2- clk3;
2) clk0 - clk1 - clk0;
3) clk2 - clk3 - clk2.
The circuit will be limited by the second one. Skew clk1 by 15ps to average 680ps and
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650ps in loop 2). The clock period will be:

Tclk + tskew1,2 > tclk−q + tmax0to1 + tsu

Tclk = 80ps+ 680ps+ 40ps− 15ps
= 785ps

or

Tclk + tskew2,1 > tclk−q + tmax1to0 + tsu

Tclk = 80ps+ 650ps+ 40ps+ 15ps
= 785ps

With Tclk = 785ps, skew2 can be set from 0ps to 15ps without any setup violation.
However, a larger negative skew between clk2 and clk3 can favour the hold time slack.
So we choose skew2 = 15ps. The resulted hold time slack is:

Hold Slack = tclk−q + tmin2to3 − tskew2,3 − thold

= 80ps+ 10ps− (−15ps)− 60ps
= 45ps

We clarified during the exam in errata that you should use tskew3 = 0 for simplicity.
However, if you are assuming tskew3 = 10ps from part (b), you’ll still get full credit for
this part.
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Problem 9: SRAMs and Decoders [16/24 pts, 24 mins]

a) Given the 6T SRAM shown below, evaluate the following statements as true (T) or false (F):

Figure 11: 6T SRAM

i) This SRAM array can only support 1 read and 1 write port.

ii) SRAM cells with more than 6 transistors will always support arrays with more
than 1 read and/or write ports.

iii) The bitline that stays high is the one primarily involved in flipping the cell state
during a write operation.

iv) In a FinFET implementation of a 6T SRAM, the ratio of (W/L)2 : (W/L)5 :
(W/L)1 can be 1:2:3 for good read stability and writability.

v) In a 6T SRAM, circuit techniques that improve read stability inevitably hurt
writability, and vice versa.

vi) SRAM cell leakage degrades read access time.

Solution:
i) T, it cannot support more than 1 of each port.
ii) F, some are used to decouple read and write operations, others to improve power,

etc. instead of enabling adding additional read/write ports.
iii) F, the BL that is pulled low flips the state through the access transistor. Recall

that NMOS transistors can’t pass a good ’1’.
iv) T, (W/L)2 < (W/L)5 is necessary for writability. (W/L)5 < (W/L)1 is necessary

for read stability. This is not to be confused with sizing (ratio of W’s only), where
there is a distinction between FinFET (1:2:3 due to equal P/N resistance) and planar
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(1:2:2 due to 2x more PMOS resistance).
v) T, techniques include adjusting voltages of wordline, bitlines, or the latch pair. As

shown in discussion, tweaking for read stability and writability are fundamentally
opposing goals in a 6T SRAM. Decoupled read/write cells (e.g. 8T) do not have
this tradeoff.

vi) T, the leakage of bitcells pulls both bitlines down simultaneously and unevenly,
reducing the ability for the cell being read to generate a difference in bitline voltage
as easily.

b) Consider an 256-word SRAM array where each word is 256 bits wide. The row decoding logic
is placed to the left of the array, as shown in lecture. The array has the following properties:

• The 6T SRAM cell area is 0.2µm× 0.2µm.
• Access transistors have Cg = Cd = 20aF .
• The decoding scheme consists of 4-bit predecoders and final row decoders. The circuit

model for each predecoder is shown below (Fig. 12).
• CW models the wire capacitance between the predecoder and final decoders.
• CW L models the total load on each final decoder.
• The wordline has capacitance per unit length of 0.1fF/µm.
• In this technology, Rp = Rn for a unit inverter and γ = 1.

Cin C1
W

CW = 8 ∗ C2

C2 C3
WL

CW L = 100 ∗ Cin

×M

Figure 12: Row decoder model

Calculate:

i) the total number of final decoders each predecoder drives (i.e. the factor M in Fig. 12)
ii) the total capacitance per wordline
iii) the stage effort (you may leave this expression in terms of a root)

Solution:
i) M = 256/24 = 16
ii) Wordline capacitance comes from the wire and all of the gates of the access transis-

tors.
CW L = 256 ∗ 2 ∗ 20aF + 256 ∗ 0.2µm ∗ 0.1fF/µm = 15.36fF
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iii) LE of 4-input NAND is 5/2 and 2-input NAND is 3/2. The branching factor at
node W is 8 + M where M is 16 (above).

N = 4, F = 100, B = 24, G = 15/4
H = GFB = 9000
SE = N

√
H = 4√9000

To check:

SE = 4√9000 = 9.74
C3 = CW L/SE = 1.577fF

C2 = C3/SE ∗ 3/2 = 0.243fF
C1 = C2/SE ∗ 24 = 0.598fF

Cin = C1/SE ∗ 5/2 = 0.1536fF = CW L/100

c) (251A only) Now let’s split the SRAM words into two halves and place the decode circuitry
down the middle. The final decoder is split into two, each driving half of the word line. This
new array decoding configuration is modeled in Fig. 13 and supposedly has a lower minimum
decoding delay compared to Fig. 12, especially for SRAMs with large word sizes. Pay special
attention to CW – recall that it models a wire that spans the entire array height, which is
unchanged from part b).

Cin C1
W

CW = CW (from part b)

C2 C3
WL1

CW L = 50 ∗ Cin

C2 C3
WL2

CW L = 50 ∗ Cin

×M

Figure 13: Split final decoder model

Your classmate analyzed this new circuit using the Path Delay method and found that its
minimum delay is exactly the same as that of the circuit in Fig. 12. The only difference they
found for minimum delay is that C2 and C3 are halved. Concisely explain why your classmate
could not support the claim of lower delay and identify what was omitted (hint: should they
analyze this differently?).
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Solution:
It is important to first redo your classmate’s work. It turns out they did the calculations
flawlessly. Intuitively:

• The wordline capacitance is correctly halved because there are half the number of
cells and half the wire length

• Note that CW is the same value as what would be calculated in part b)
• Essentially, by halving the load on the final decoder but doubling the number of

final decoders, halving C2 and C3 and keeping the same value of CW means the
branching factor at node W is unchanged

• As a result, all of the factors in path effort calculation (N, F, B, G) is the same as
the original circuit, and hence the minimum calculated path delay is the same.

So, it turns out the contribution of wire resistance was omitted from their analysis. Since
the wordline length is halved, its resistance is half of what it was before. When these
circuits are analyzed as an Elmore delay problem, the RC time constant contributed by
the wordline wire is reduced, which supports the claim of lower decoding delay.
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Problem 10: Caches [12 pts, 10 mins]

a) A direct-mapped cache is 8KB in size, with 64B blocks. Memory addresses are 32 bits. In a
memory access, how many address bits are used for:

i) The byte-select offset?

ii) The cache block index?

iii) The cache tag?

Solution:
Offset bits: 64-byte blocks = 26 bytes → 6 offset bits.
Index bits: Cache size is 8 KB = 213 bytes
213 B / 26 B/block = 27 blocks → 7 index bits
Tag bits: 32 - 6 - 7 = 19 tag bits

For parts b–d, consider the following program, written in pseudocode, that loops twice over an
array of 1-byte numbers (for clarity, RISC-V assembly is also provided at the end of the problem).
Assume N is very large and divisible by 32, and that arr starts at a memory address divisible by
32.

byte arr[N];

for (int j = 0; j < 2; j++) {
for (int i = 0; i < N; i++) {

process(arr[i]);
}

}

b) Suppose we have an LRU (evict least recently used), 32-byte block, fully associative cache of
size N bytes.

i) In terms of N, how many memory accesses are cache hits?

ii) Misses?

Solution:
In the first iteration, every 32 memory accesses, we get one compulsory miss. All the rest
of the N memory accesses are cache hits. At this point, the entire array has been stored
in the cache.
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In the second iteration, all N memory accesses are cache hits.
Hits: 31

32N + N = 63
32N

Misses: 1
32N

c) Suppose we have an LRU (evict least recently used), 32-byte block, fully associative cache of
size N / 2 bytes.

i) In terms of N, how many memory accesses are cache hits?

ii) Misses?

Solution:
In the first iteration, the pattern is the same as for the cache of size N. Every 32 memory
accesses, we get one compulsory miss. All the rest of the N memory accesses are hits.
However, once the cache fills up, we evict the block we used least recently.
When we begin the second iteration, only the second half of the array can be found in
the cache. So we still get 1 out of 32 misses. Then, once we reach the second half of the
array, the cache has been filled with the first N/2 elements, so we continue to get 1 out
of 32 misses.
So, we get 1 miss per 32 accesses for the entire 2N memory accesses in the program.
Hits: 31

32 × 2N = 31
16N

Misses: 1
32 × 2N = 1

16N
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d) Suppose we take our LRU cache of size N / 2, and change its replacement policy to MRU,
meaning that when we need to evict a cache block, we evict the most recently accessed block.
For the given program, would this cache perform the same, better, or worse than its LRU
counterpart? Why?

Solution:
Better. In the first iteration, the hit/miss pattern is the same as before. However, we
get some cache hits in the first half of the array for the second iteration, so we get more
hits and fewer misses than the LRU cache.
The reason for this is that in the first iteration, once we start accessing the second half
of the array, rather than replacing the entire first half of the array we only replace the
most recent 32-byte block, leaving the rest of the array in the cache. So, when we begin
the second iteration, most of the first half of the array is in the cache, so every memory
access is a cache hit.

For clarity, we provide RISC-V assembly equivalent to the pseudocode above:

li t0, arr # arr is the address where the array starts
li t1, 2
li t2, N # N is a very large number
li t3, 0 # t3 = j

Loop1:
bge t3, t1, Loop1End
li t4, 0 # t4 = i

Loop2:
bge t4, t2, Loop2End
add t5, t0, t4
lb a0, 0(t5)
... # process a0
addi t4, t4, 1
j Loop2

Loop2End:
addi t3, t3, 1
j Loop1

Loop1End:
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Spare page. Will not be graded. Feel free to tear off and use for scratch work.
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Appendix
Table of SI Prefixes:

Prefix Symbol Magnitude
exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18
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