
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Sciences

EECS151/251A B. Nikolic & S. Shao
Fall 2019 12/19/19

Final Exam

Name:

Student ID number:

Class (EECS151 or EECS251A):

This is a closed-book exam, but you are allowed three sheets of stapled notes. Write your Student
ID number on all pages.

Problem 1 2 3 4 5 6 Total

Minutes 20 35 30 30 25 40 180

Max
Points

20 40 30 30 20 40 180

Points

1



Student ID number:

1. Finite State Machine(Midterm 1 Clobber 1) (20 mins, 20 points)

Cory’s Building Manager asked you to help them design a Moore state machine for the eleva-
tor in Cory Hall that doesn’t break all the time. Specifically, you received the following design
specs:

• To simplify the problem, let’s assume that there are only two floors, where we have an “Up”
button on the first floor and a “Down” button on the second floor.

• There is also a sensor indicating which floor the elevator is currently at.

• If the elevator is moving, pressing the “Up” and “Down” buttons should have no effect.

• In addition, we only read the sensor when the elevator is moving.

We use the following symbols to represent the inputs, outputs, and the states of the elevator
controller in our FSM design:

Inputs:

• U1, D2 (Buttons on each floor.)

• S (Sensor to tell whether elevator is at the floor: 0 for the 1st floor and 1 for the 2nd floor.)

Outputs:

• Door Open (0) or Closed (1)

States:

• F1: At Floor 1.

• MF1to2: Moving from Floor 1 to Floor 2.

• F2: At Floor 2.

• MF2to1: Moving from Floor 2 to Floor 1.

2



Student ID number:

(a) Complete the state transition diagram.

F1

/

MF2to1

/

MF1to2

/

F2

/

3



Student ID number:

(b) Fill out the truth table for the next state and output logic.

Current State (CS) U1 D2 S Next State (NS) Output

F1 0 0 X

F1 0 1 X

F1 1 0 X

F1 1 1 X

MF1to2 X X 0

MF1to2 X X 1

F2 0 0 X

F2 0 1 X

F2 1 0 X

F2 1 1 X

MF2to1 X X 0

MF2to1 X X 1

4



Student ID number:

(c) The current state is one-hot encoded into 4 bits according to the table below:

Current State (CS) CS[3:0]

F1 4'b0001

MF1to2 4'b0010

F2 4'b0100

MF2to1 4'b1000

Write the Boolean equations for the next state bits and output in sum-of-products form in terms
of CS[3:0], U1, D2, S.

NS[0] =

NS[1] =

NS[2] =

NS[3] =

Output =

(d) Implement the logic for Output using NAND2 and NOR2 gates.

5



Student ID number:

2. RISC-V and Microarchitecture (Midterm 1 Clobber 2) (35 mins,
40 points)
There are several ways to improve the performance of the basic RISC-V datapath presented in
lecture. We’ll explore 3 optimizations in this problem: 1) regfile writeback bypass from EX stage,
2) multicore processor, and 3) superscalar architecture.

Take a typical 3-stage RISC-V datapath split as shown in the diagram below. It has no forwarding
paths, but the regfile can be written and read on the same cycle (as presented in lecture). The
IMEM and DMEM are async read memories.

PC

IMEM Decode RF ALU DMEM

Instruction Fetch (IF) Execute (EX)
Mem + Writeback

(MWB)

It seems wasteful to force all instructions to go through the memory stage even if they are arithmetic
instructions that have finished computation in the 2nd stage. One proposal is to add a mux to the
regfile wdata and waddr ports with the ALU output and rd from the EX stage, as shown below.

PC

IMEM Decode RF ALU DMEM
wdata/waddr

(a) Circle the hazard types that are introduced by this datapath modification.

Data Hazard Control Hazard Structural Hazard

Circle the instruction sequences that wouldn’t execute correctly on the modified datapath.

addi x2, x3, 100

xor x2, x2, x3

lw x1, 0(x2)

addi x3, x4, 100

sw x1, 4(x2)

sw x1, 8(x2)

(b) Let’s say we add another write port to the regfile, so that the mux is no longer necessary. If
both the MWB stage and EX stage want to write to the same address in the regfile, which stage’s
data should take precedence and why?

6



Student ID number:

(c) To prepare for a multicore processor, design an arbiter that arbitrates two input interfaces
(data0_in, data1_in) to one output interface (data_out). The arbiter should conform to this
spec:

i. If only data_in_valid[0] is high, then data_out should be driven from data0_in.

ii. If only data_in_valid[1] is high, then data_out should be driven from data1_in.

iii. If data_in_valid == 2'b11, the arbiter should prioritize the interface that didn’t send data
most recently (round-robin). On reset, the arbiter should prioritize interface 0.

Fill the Verilog template below by writing your answers in the lines corresponding to the (1), (2),
etc. numbers in the template.

module arbiter (

input clk, rst,

input [31:0] data0_in, data1_in,

input [1:0] data_in_valid,

output reg [31:0] data_out,

output reg data_out_valid

);

reg last_served;

always @(posedge clk) begin

if (rst)

last_served <= (1);

else if (&data_in_valid)

last_served <= (2);

else if (|data_in_valid)

last_served <= (3);

end

always @(*) begin

if (&data_in_valid) begin

data_out = (4);

data_out_valid = (5);

end

else if (|data_in_valid) begin

data_out = (6);

data_out_valid = (7);

end

else if (!(|data_in_valid)) begin

data_out = (8);

data_out_valid = (9);

end

end

endmodule

1.

2.

3.

4.

5.

6.

7.

8.

9.

7



Student ID number:

(d) Let’s design a multi-core processor. To do this, we will take a standard 3-stage RISC-V datapath
and duplicate it, where each copy has its own PC and regfile. Assume that each datapath has its
own instruction memory, but they share a data memory that only has one R/W port, as shown
below.

PC1

IMEM1 Decode1 RF1 ALU1

PC2

IMEM2 Decode2 RF2 ALU2

DMEM

The data memory access is arbitrated in a round-robin fashion (starting with prioritizing core 1)
just like the arbiter you designed. There are no forwarding paths, but you can write and read data
to/from the regfile on the same cycle (as presented in lecture). Complete the pipeline diagram for
the following assembly program executing on both datapaths at the same time.

1 addi x2, x1, 100

2 sb x1, 0(x2)

3 lw x1, 4(x2)

4 sw x1, 4(x2)

Core 1 Core 2

Cycle IF EX MWB IF EX MWB

0 addi addi

1 sb addi sb addi

2 lw sb addi lw sb addi

3

4

5

6

7

8

9

8



Student ID number:

Let’s now turn to a superscalar datapath that fetches two instructions per cycle from the IMEM,
and has two execution units (ALUs) to double the instruction throughput. The 2 instructions in
the RF stage are allowed to dispatch to the EX/M stage if their required execution unit is free and
there are no data hazards. A diagram is shown below:

PC

IMEM
Decode

RF
+

Dispatch
ALU1
DMEM

Decode

32

32

ALU2

3:2
mux

(e) Does the superscalar pipeline have any structural hazards? If so, write a small assembly snippet
that exposes the hazard.

Circle your answer

Yes

No

(f) Fill in a pipeline diagram for the following program. The ‘1’ and ‘2’ suffixes are used to
distinguish the 2 instruction slots in each pipeline stage.

1 ori x1, x2, 0x2

2 addi x1, x2, 100

3 xor x3, x4, x5

4 and x2, x4, x5

5 lw x3, 0(x3)

6 sw x2, 0(x3)

Cycle IF 1 IF 2 RF 1 RF 2 EX/M 1 EX/M 2

0 ori addi

1 xor and ori addi

2

3

4

5

6

7

8

9



Student ID number:

(g) (EECS251A Students Only) Often the data bus widths of a cache and a backing memory
don’t match. We’ll design a width converter that bridges a 8-bit ready-valid source to a 16-bit
ready-valid sink.

You will use two FIFOs to perform this task. Assume the FIFOs produces dout on the same cycle
that rd_en is asserted (this is also known as a first-word-fall-through FIFO). (i.e. you don’t have
to wait a cycle after rd_en is asserted to get the right dout).

module width_converter (

input clk, rst,

input [7:0] data_in,

input data_in_valid,

output data_in_ready,

output [15:0] data_out,

output data_out_valid,

input data_out_ready

);

reg x_reg;

wire f1_empty, f1_full;

wire f2_empty, f2_full;

always @(posedge clk) begin

if (rst) x_reg <= (1);

else if ((2)) x_reg <= (3);

end

fifo f1 (

.clk(clk), .rst(rst),

.din(data_in),

.wr_en((4)),

.dout(data_out[7:0]),

.rd_en((5)),

.empty(f1_empty),

.full(f1_full)

);

fifo f2 (

.clk(clk), .rst(rst),

.din(data_in),

.wr_en((6)),

.dout(data_out[15:8]),

.rd_en((7)),

.empty(f2_empty),

.full(f2_full)

);

assign data_in_ready = (8);

assign data_out_valid = (9);

endmodule

1.

2.

3.

4.

5.

6.

7.

8.

9.

10



Student ID number:

3. Delay and Energy (Midterm 2 Clobber 1) (30 mins, 30 points)

(a) Circuit from the figure below takes the input clock, CLKin, and generates two complementary
clocks CLKout and CLKout. CMOS inverters are symmetrically sized with input capacitances C1,
C2 and C3. Drain capacitances are equal to gate capacitances.

CLK
in

CLK
out

CLK
out

C1 C2

C3

If the total capacitance seen by the input CLKin is 1pF and each of the loads on CLKout and
CLKout is 10pF, find three equations that when solved for will give you the optimal sizing of C1,
C2 and C3 such that the output clock phases are complementary with minimum delay.

Equation1 :

Equation2 :

Equation3 :

11



Student ID number:

(b) In this question, we will investigate the delay due to a wire, and how it changes with inverters
that buffer the signal along the path.

i. What is the propagation delay along this wire segment from IN to OUT? Express your answer
in terms of circuit parameters, RW and CW .

C
W

R
W

R
W

IN OUT

C
W

C
W

R
W

R
W

C
W

C
W

R
W

R
W

C
W

C
W

tp =

12



Student ID number:

ii. Now we’d like to see how the delay scales as we buffer between these segments. First replace
the inverters with their equivalent RC models. Given that the input and output capacitance
of an inverter is N ·Cinv and the output resistance of the inverter is Rw

N (where N is the size of
the inverters, each of them being the same size), express the propagation delay along the line
in terms of circuit parameters. Then, derive an expression for the optimal size (Nopt) of the
inverters that minimizes this delay.

C
W

R
W

R
W

IN OUT

C
W

C
W

R
W

R
W

C
W

C
W

R
W

R
W

C
W

C
W

tp =

Nopt =

13



Student ID number:

4. Arithmetic (Midterm 2 Clobber 2)(30 mins, 30 points)

In this problem we will analyze and compare a few different 16-bit adders. Inputs are A15-A0 and
B15-B0, outputs are S15-S0. In all diagrams, white squares compute propagate and generate signals
for each bit (Pi = Ai +Bi, Gi = AiBi). The complements of these signals are also available.

A ripple carry adder is shown in Figure 1. Each gray circle implements the generate equation
Gi:k = Gj:k +Pj:k ·Gi:j−1 (for a ripple carry this would simplify to G0:k = Gk +Pk ·G0:k−1), where
the indices i, j, k (i ≤ j ≤ k) correspond to the index of the input propagate and generate signals.

Figure 1: Ripple-carry Adder.

14



Student ID number:

(a) You have been asked to implement this adder in CMOS and you realize that each of carry stage
needs to be implemented as an inverting CMOS and-or-invert (AOI) gate (A ·B + C), followed by
an inverter to implement the correct logic.

Alternatively, you may be able to use two types of gates in alternating bit positions and reduce the
number of gates in the critical path. Draw and size the CMOS logic gates that correspond to
grey circles at odd and even bit positions in Figure 1.

Odd Even

(b) For each gate, what is the logical effort of the gate’s input that’s on the critical path.

LEodd =

LEeven =

15



Student ID number:

(c) What is the critical path delay for the adder in Figure 1, if the diamond boxes have the same
input capacitance as the grey dots and all grey dots are sized the same? Assume the delay of the
diamond and square boxes ares tdiamond and tsquare.

Delay =

(d) Now you would like to build an even faster adder. A diagram of a carry-lookahead adder is
shown in Figure 2. Each white triangle is just a buffer. Grey dots perform the same logic operation
as those in part a). black dots implement the function of grey dots, and, in addition, compute
group propagate signals Pi:k = Pi:j−1Pj:k

Figure 2: Carry-lookahead adder.

What is the radix of tree in Figure 2?

Radix =

16



Student ID number:

(e) You realize again that you may be able to use two types of gates in alternating rows in Figure 2
to reduce the number of inverters in the critical path. Draw the CMOS logic gates that correspond
to black circles at odd and even rows in Figure 2.

Odd Even

(f) What is the overall branching effort of the critical path of this tree (Assume all gates have the
same input capacitance).

Branching Effort =

17



Student ID number:

5. SRAM (25 mins, 20 points)
Consider a 256-word SRAM array where each word is 128 bits wide. The SRAM cells, shown in
the figure below, are sized to be as small as possible but stable. SRAM cell access transistors are
minimum length, and the cell area is 0.2µm x 0.2µm. Gate capacitance equals drain capacitance
Cg = Cd = 2fF/µm. The decoder consists of a 4-bit predecoder and final row decoders. The final
row decoder consists of a NAND gate and an inverter.

(a) Assuming that all the transistors have the same length and that during a read, the bitlines
are precharged to Vdd. If the width of M5 is 30 nm, what are the right width combinations of
M2 and M1 would guarantee both read and write stability?

A. WM2 = 15nm and WM1 = 45nm

B. WM2 = 45nm and WM1 = 15nm

C. WM2 = 30nm and WM1 = 30nm

Answer =

18



Student ID number:

(b) If the wordline has the capacitance per unit length of CWL = 0.1fF/µm, what is the total
capacitive load of the row decoders?

Crd load =

19



Student ID number:

(c) The predecoder decodes 4 bits, and drives a metal line with Cmetal = 0.01fF/µm, as shown in
the figure below. What is the total capacitance load on the predecoder? Use Crd to represent
the capacitance of a row decoder.

Cpredecoder load =

20



Student ID number:

6. Timing Analysis (40 mins, 40 points)
In this problem, you are asked to perform setup and hold timing analyses of the given circuit. Each
flip flop is identical with a clock-to-Q delay of tc−q = 50ps, setup time of tsetup = 75ps and a hold
time of thold = 85ps. The signal SEL (and SEL) is an input to the circuit, and while its logic
value is unknown to you, assume that it is constant during normal operation.

(a) Given that there is no skew between the clock signals, what is the minimum clock period this
circuit can operate with?

Tclk,min = ps

21



Student ID number:

(b) If tskew2 = −10ps, tskew3 = 10ps, is there a timing violation in this circuit with a clock period
of Tclk = 725ps? Denote your timing analysis in terms of Setup and Hold slacks, where a
negative slack would mean a violation.

Setup Slack= ps

Hold Slack = ps

(c) Using the same skew values from part (b), but now also considering there is a cycle-to-cycle
jitter in clk1, with a value of tjitter = 40ps, is there a timing violation in this circuit with a
clock period of Tclk = 725ps? Denote your timing analysis in terms of Setup and Hold slacks,
where a negative slack would mean a violation.

Setup Slack= ps

Hold Slack = ps

(d) Considering there is no jitter, if you were free to set the values of tskew2 and tskew3 (including
negative values), what would you set them as to operate the circuit with the smallest possible
clock period while ensuring there are no timing violations? What is the minimum clock period
this design can work with?

tskew2 = ps

tskew3 = ps

Tclk,min = ps

22


