UNIVERSITY OF CALIFORNIA

College of Engineering Department of Electrical Engineering and Computer Sciences

EECS 40 Introduction to Microelectronic Circuits

Fall 2003 Prof. King

MIDTERM EXAMINATION #2

November 3, 2003 Time allotted: 50 minutes

NAME:	OLUTIO	NS,First
(print)	11451	T II St
Signature:		STUDENT ID#:
Discussion Secti	on:	
1. This is a CLO	SED BOOK exai	m. However, you may use 2 sheets of notes and a calculate
	R WORK or REA	ASONING on this exam. the grader.)
3. Write your an	nswers clearly (le	egibly) in the spaces (lines, boxes, or plots) provided.
4. Remember to s	specify the units o	on answers whenever appropriate.
	SCORE:	1/ 16
		2 / 17
		3/ 17
	Tota	d: /50

Problem 1: Energy-Storage Elements and 1st-Order Circuits [16 points in total]

a) Consider the capacitive voltage-divider circuit below. Find V_{out} . How will V_{out} change if a small load capacitance $C_{load} < 2 \mu F$ is connected between terminals a and b? [4 pts]

Vout =
$$\frac{1}{8\mu F + 2\mu F}$$
 (10 V) = 8V

capacitance between terminals a and b

 $V_{out} = 8 \text{ VoHs}$

 V_{out} will [increase, decrease] not change] (circle one) when C_{load} is connected, because

the capacitance between terminals a and b will increase.

b) Consider the following RC circuit:

Provide a <u>physical</u> reason why it takes longer for v_c to reach its final value if R is increased. (Why is the characteristic time constant τ proportional to R?) [2 pts]

$$i = \frac{V_0 - v_c}{R} = C \frac{dv_c}{dt}$$

 v_c will take longer to reach its final value if R is increased because

the current flowing through R (to charge C) will decrease, hence it will take longer to deliver the charge Q= CVo.

Problem 1 (continued)

c) Assume that the circuit below is operating in steady state with the switch open for t < 0. Find and accurately sketch v(t) for all t. [10 pts]

For
$$t < 0$$
: $v(t) = 5 \text{ V}$ For $t > 0$: $v(t) = -1000 \text{ t}$

$$v(t) \text{ (Volts)}$$

$$10^{-3}$$

$$-10^{-3}$$

$$-3.6$$

Problem 2: Semiconductor Materials and Devices [17 points in total]

- a) Consider a Si sample maintained at T = 300K, uniformly doped with Arsenic atoms to a concentration 3×10^{16} cm⁻³. The electron mobility = 1000 cm²/V*s; hole mobility = 400 cm²/V*s.
 - i) Estimate the resistivity of this sample. (Use $q = 1.6 \times 10^{-19}$ C in your calculation.) [4 pts]

As is a Column V element -> donor in Si

$$N_D = 3 \times 10^{16} \text{ cm}^{-3}$$
, $N_A = 0 => n = 3 \times 10^{16} \text{ cm}^{-3}$, $p = \frac{n_i^2}{n} \approx 3000$
 $P = [g \mu_n n + g \mu_p p]^{-1} \approx [g \mu_n n]^{-1}$ since $n >> p$
 $P = [g \mu_n n + g \mu_p p]^{-1} \approx [g \mu_n n]^{-1} = [4.8]^{-1} \approx 0.2 \Omega - \text{cm}$

How will the resistivity of this sample change if it were to be doped additionally with 3×10^{16} cm⁻³ Phosphorus atoms? [3 pts] carrier mobilities would be degraded.

P is also a Column V element \rightarrow donor in S: $N_D = 6\times10^{16}$ cm⁻³, $N_A = 0 = 0$ = 0 = 0 = 0 = 0

The resistivity will [increase, decrease] not change] (circle one)

by a factor that is [greater than, less than equal to] (circle one) 2 when phosphorus is added because

the number of conduction electrons will double, but un will decrease

b) Explain (using 1 or 2 sentences) why a pn junction has capacitance. [2 pts]

A pn junction has capacitance because

charge is stored in the depletion region of a pn junction. The width of the depletion region, and hence the charge stored, varies with the bias voltage. $C_j = |\frac{dQ}{dV_D}|$

Problem 2 (continued)

c) Assume the diodes in the circuit below can be modeled as perfect rectifiers.

For what values of V_{in} is D1 on? Explain your reasoning. [3 pts]

D1 is on for $V_{in} > 1 \vee_{0} 1+ \cdots$ because forward current can flow in DI as long as Vin > Vout. DZ fixes Vont at IV, unless Vin causes Vont to be > 1 Volt.

For what values of V_{in} is D2 on? Explain your reasoning. [2 pts] ii)

D2 is on for $V_{in} < 2 \text{ Vo Hs}$ because if Vin exceeds 2V, Vont will exceed I VoH and DZ will be reverse biased. (If D2 is on for Vin > 2V, reverse current would have to

For Vin < 2V, DZ is on and

iii)

For Vin > 2 V, DZ is off and

Problem 3: MOSFET and Common-Source Amplifier [17 points in total]

a) The following is the i_D - v_{DS} characteristic of an n-channel MOSFET:

Indicate how this characteristic would change (by drawing the modified i_D - v_{DS} characteristic with appropriate changes in I_{DSAT} and V_{DSAT}):

i) when V_T is lowered – use a labeled solid line on the plot above [2 pts]

$$I_{DSAT} = k' \frac{W}{2L} (V_{GS} - V_T)^2$$
 increases
 $V_{DSAT} = V_{GS} - V_T$ increases
slope at small $V_{DS} = k' \frac{W}{L} (V_{GS} - V_T - \frac{V_{DS}}{2})$ increases

ii) when channel-length modulation is significant – use a labeled dashed line on the plot above [2 pts]

iii) when the current is limited by velocity saturation, rather than pinch-off – use a labeled dotted line on the plot above [2 pts]

$$V_{DSAT} = \frac{L}{M} v_{sat} < V_{GS} - V_{T}$$
 (decreases)

 I_{DSAT} decreases

.

slope at small vos unchanged

Problem 3 (continued)

b) Below to the left is the i_D vs. v_{DS} characteristic for a long n-channel MOSFET with $V_T = 1$ V.

$$V_{DSAT} = V_{AS} - V_{T}$$

3 = $V_{AS} - 1$ => $V_{AS} = 4V$

- c) Suppose the MOSFET in part (b) is used in the amplifier circuit shown above to the right.
 - Draw the load line on the MOSFET i_D - v_{DS} plot (above to the left). [3 pts]
 - In what region is the MOSFET operating? [2 pts]

The MOSFET is operating in the [linear, saturation] cutoff] (circle one) region because VDS > VDSAT and iD > 0

What is the incremental change in the output voltage (i.e. v_{out}) for a -1 mV change in the iii) input voltage (i.e. $v_{gs} = -1 \text{ mV}$)? [4 pts]

$$g_{m} = \frac{\partial i_{D}}{\partial v_{GS}} = \frac{\partial}{\partial v_{GS}} \left[k' \frac{w}{2L} (V_{GS} - V_{T})^{2} \right]$$

$$= k' \frac{w}{L} (V_{GS} - V_{T})$$

$$= \frac{z}{9} \frac{mA}{V^{2}} \times 3V = \frac{z}{3} mS^{7}$$

$$i_{DSAT} = k' \frac{W}{2L} (V_{4S} - V_T)^2 = ImA$$

= $i_{DSAT} = k' \frac{W}{2L} (3)^2 = ImA$
 $k' \frac{W}{L} = \frac{2}{9} mA/V^2$

$$V_{out} = -g_m V_{gs} (5k\pi)$$

= $-\frac{2}{3} \times 10^{-3} (-10^{-3})(5 \times 10^3)$
 $V_{out} = 3.3 \text{ mV}$