FINAL

Name:

SID:

Problem	Score
1	
2	
3	
4	
5	
Total (of 100)	

- 3 pages of handwritten notes, double sided, 8.5 by 11 inches
- Mark all results with a box.
- Write solutions on the exam sheets. <u>No extra pages</u>.
- Simplify algebraic results as much as possible.
- Show derivations and explain briefly how you arrived at your result.

- 1. [20 points] In Figure 1, $C_s = 1$ pF, $C_f = 6$ pF, $C_L = 1$ pF, $C_x = 300$ fF.
 - a) Calculate the dynamic settling time for 1% relative error. Assume that the transconductor is ideal with value $G_m = 1$ mS. Assume that all capacitors have been discharged before an input is applied to the circuit.

Note: the feedforward current through C_f has significant effect on the solution.

b) Now the transconductor in Figure 1 is realized with the circuit shown in Figure 2. Assume that both transistors operate in the forward active region with $g_{m1} = g_{m2} =$ 2mS and ignore all parasitics and capacitors except those explicitly shown in the diagrams. Find the maximum value of C_{y} that results in a phase margin (for stability) of 75 degrees.

Figure 2 Transconductance amplifier.

- 2. [20 points] The total noise at the output of the SC filter shown in Figure 3 is $\sqrt{v_{oT}^2} = 6\mu V$ rms.
 - a) Modify the filter such that $\sqrt{\overline{v_{oT}^2}} = 3\mu V$ without changing the frequency response of the filter. Report the new component values in the Table below.
 - b) By what approximate factor does the power of the new filter increase compared to the original design?

Figure 3 Switched capacitor filter.

Component	Original Value	New Value
<i>C</i> ₁	3pF	
<i>C</i> ₂	2pF	
<i>C</i> ₃	1pF	
C_4	5pF	
<i>C</i> ₅	1pF	
<i>C</i> ₆	2pF	
<i>C</i> ₇	4pF	
G_{m1}	4mS	
G_{m2}	2mS	

EE 240B	UC Berkeley, EECS Department
Prof. B. E. Boser	Page 4 of 6

- 3. [20 points] The circuit shown below is controlled by an f_s =200MHz non-overlapping twophase clock.
 - a) Calculate the value of G_m required for a dynamic setting error of 0.02%.
 - b) Calculate the rms noise voltage at the output of the circuit at the end of phase 2. Assume that the transconductor is realized with a transistor amplifier with $\gamma = 0.8$ and $\alpha = 2.5$. Include the noise from both clock phases!

Parameter: $C_1 = 1$ pF, $C_2 = 200$ fF, $C_3 = 2$ pF. The switch on-resistance contributes negligible to the dynamics of the circuit. Assume that the clock has a 50% duty cycle and ignore the clock non-overlap time.

EE 240B	UC Berkeley, EECS Department
Prof. B. E. Boser	Page 5 of 6

4. [20 points] For the circuit below, find the minimum value of I_1 that results in no more than 5ns slewing time for a 1V step input. Assume that the circuit changes abruptly from slewing to linear settling and that the low-frequency gain is large and that the charge on the capacitors has been properly initialized before the step is applied.

Parameter: $C_1 = 200$ fF, $C_2 = 1$ pF, $C_3 = 2$ pF, $C_4 = 300$ fF, $V_1^* = V_2^* = 100$ mV.

EE 240B	UC Berkeley, EECS Department
Prof. B. E. Boser	Page 6 of 6

5. [20 points] For the circuit below, determine the flicker noise corner frequency required such that flicker noise adds no more than 20% to the total noise power at v_o in the band from 1Hz to infinity. Assume M_I is biased in the forward active region and neglect flicker noise at frequencies higher than the bandwidth of the circuit.

Parameter: low frequency gain $A_{vo} = v_o/v_i = -2$, $R_L = 5k\Omega$, $C_L = 200$ fF, $\gamma = 0.8$.

