1. $\mathbf{2 4}$ points Fill in the blanks:
(a) If $A=\{1,2,3\}, B=\{3,4,5\}$, then $A \cap B=\{3\}$ and $A \cup B=\{1,2,3,4,5\}$
(b) If the predicates P, Q, R all evaluate to true then the predicate $[\neg P \wedge \neg Q] \vee(\neg R)$ evaluates to false.
(c) If $f: X \rightarrow Y$ and $g: Y \rightarrow X$, then $f \circ g: Y \rightarrow Y$ and $g \circ f: X \rightarrow X$

2. 24 points

Fill in the blanks:
(a) Euler's formula is $\exp i \theta=\cos (\theta)+i \sin (\theta)$.
(b) The four distinct roots of the equation $z^{4}=1$ are $1,-1, i,-i$.
(c) If $\forall t \in$ Reals $\cos (t+\pi / 2)=R e[A \exp (j t)]$ then $A=j$.
3. 20 points Find the period and the fundamental frequency of the following functions and then give their Fourier series representation as a sum of complex exponentials. All functions are denoted $x:$ Time \rightarrow Comps, and time is in seconds.
(a) $\forall t \in$ Time $\quad x(t)=10 \sin (2 \pi t)+10 \cos (2 \pi t)$ $=(5-5 j) e^{j 2 \pi t}+(5+5 j) e^{-j 2 \pi t}$.
The fundamental frequency is 1 Hz and the fundamental period is 1 sec .
(b) $\forall t \in$ Time $\quad x(t)=(1+i) \sin (2 \pi t)+\sin (\pi t)$
$=-i / 2 \times e^{i \pi t}+i / 2 \times e^{-i \pi t}+(1-i) / 2 \times e^{i 2 \pi t}-(1-i) / 2 \times e^{-i 2 \pi t}$.
The fundemental frequency is 0.5 Hz and the fundamental period is 2 sec .
4. $\mathbf{2 0}$ points Fill in the blanks:
(a) Let D_{τ} be the system that produces a delay of τ. Let $x:$ Reals \rightarrow Comps. Then

$$
\forall t \quad\left[D_{\tau}(x)\right](t)=x(t-\tau)
$$

(b) Let H be the frequency response of the system $L=D_{1}+D_{2}$. Then

$$
\forall \omega \in \text { Reals } \quad H(\omega)=e^{-j \omega}+e^{-2 j \omega} .
$$

To obtain this result, consider an exponential input x to L,

$$
\forall t, \quad x(t)=\exp (i \omega t)
$$

Let the response be $y=L(x)=D_{1}(x)+D_{2}(x)$. Then

$$
\forall t, \quad y(t)=\left[e^{-i \omega}+e^{-2 i \omega}\right] \exp (i \omega t)
$$

and so $H(\omega)=e^{-i \omega}+e^{-2 i \omega}$.
5. 20 points Suppose $L:$ Inputs \rightarrow Outputs is an LTI system, where Inputs $=$ Outputs $=$ [Ints \rightarrow Reals]. Let u denote the unit step function:

$$
\forall t \in \text { Ints } \quad u(t)= \begin{cases}0 & t<0 \\ 1 & t=0,1,2, \cdots\end{cases}
$$

Suppose $y=L(u)$ is given by:

$$
\forall t \in \text { Ints } \quad y(t)= \begin{cases}0 & t<0 \\ t & t=0,1,2, \cdots\end{cases}
$$

Consider the input signal z :

$$
\forall t \in \text { Ints } \quad z(t)= \begin{cases}1 & t=0 \\ 0 & t \neq 0\end{cases}
$$

Let $w=L(z)$.
(a) Plot the signals u, y, z.
(b) Determine w and plot w.

Carefully mark the appropriate time values and magnitudes in your plots.
Figure 1 gives the plots of the four signals. The plots of u, y, z are obtained directly. The plot of w is obtained as follows. We observe that $z=u-D_{1}(u)$ so

$$
\begin{aligned}
w=L(z)=L\left(u-D_{1}(u)\right) & =L(u)-D_{1}(L(u)) \quad \text { by LTI } \\
& =y-D_{1}(y)
\end{aligned}
$$

Figure 1: Figure for Problem 5

