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Solutions for Midterm #2 - EECS 145M Spring 1999

1a The following are essential:
• Connect all 16 lines of one parallel output port to the input of the D/A converter
• Connect the analog output of the D/A to the analog input of the A/D
• Connect 12 lines of the output of the A/D to the parallel input port
• Connect 1 line of the other parallel output port to the A/D start conversion input
• Connect the data ready output of the A/D to one of the unused lines of the parallel input port.
• Start A/D conversion under computer program control
• Use the “Data ready” A/D output to signal the program that new data are available
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1b
1 Set “Ready for input data”  low, which makes “Data Ready” low
2 Start loop over all values of n from 0 to 216 – 1
3 Write n to the D/A converter
4 Write a low, then a high to “Ready for input data” to start A/D conversion
5 Read “Data ready” in a loop until it goes high
6 When the A/D converter finishes, it strobes the data onto the input port and sets the “Data

Ready” line high
7 The program detects this and reads the input port
8 The program sets “Ready for input data” low, which causes the A/D converter to set “Data

Ready” low
9 If the A/D output has changed from the last value read (say from m–1 to m), store the value of

n, which corresponds to the Vm–1, m transition voltage.
10 Loop back to step 2
11 Tabulate the difference between the measured transition voltages Vm–1, m and the ideal

transition voltages V(m–1,m) = (m–0.5)(4.095V/4095) = 0.001 V (m–0.5). The maximum
value is the maximum absolute accuracy error.

Essential steps: (1) vary all 16 D/A bits; (2) read A/D only after Data Ready has gone high; (3)
tabulate D/A input where A/D output changes; (4) compare transition voltages with ideal

[3 points off if only 12 D/A bits are varied. The transition voltages (or the center of the steps)
cannot be determined accurately unless more than 12 bits of the accuracy of the 16-bit D/A is
used.]
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[4 points off if the method is not automatic]
[3 points off if the transition voltages are not measured]
[3 points off if handshaking steps not indicated]

1c As part 1b above, but compare the measured transition voltages Vm–1, m (as a function of m)
with the straight line passing between the first measured transition voltage V0,1 and the last
measured transition voltage V4094, 4095 . The largest deviation is the maximum linearity error.
[3 points off if the straight line is defined in terms of Vref– and Vref+ (which is required for the
absolute accuracy error). The maximum linearity error requires a straight line that passed
through the measured end points]

1d As part 1b above, but compare the A/D step sizes Vm, m–1 – Vm–1, m with their average value.
The largest deviation is the maximum differential linearity error. Alternatively, the A/D step
sizes could be determined as the number of successive D/A inputs that produce the same A/D
output.
Note: It was essential to use the concept of a “table of transition voltages” to answer parts b
and c of this problem.

1e Since the D/A has an absolute accuracy of ±1LSB, and its step size is 16 times finer than the
average step size of the A/D, this design can measure the A/D transition voltages to an accuracy
of ±1/16 of the A/D LSB. Therefore, the accuracy is ±1/32 A/D LSB for the maximum
absolute and linear errors and ±1.414/32 A/D LSB for the maximum differential linearity error
(difference between two random errors).
Note: Due to a typo on the 1997 midterm #2 solutions, ±1 was also accepted

2a Filter gain >0.99 for frequencies <78,400 Hz
[1 point off for giving a single frequency rather than a range]

2b Filter gain <0.01 for frequencies >177,800 Hz
[1 point off for giving a single frequency rather than a range]

2c S = M ∆t = M/fs = 216/218  Hz = 0.25 s
2d H0 corresponds to 0 Hz (d.c.); H1 corresponds to 1/S = 4 Hz
2e The FFT produces coefficients Hn, where n = 0 to M–1.  Therefore, the coefficient with the

highest index is HM-1 or H65,535, which corresponds to 4 Hz.
[2 points off for HM and 0 Hz]  [3 points off for HM and 218  Hz]

2f The FFT coefficient that corresponds to the highest frequency is HM/2 or H32,768. The
corresponding frequency is (M/2)/S = 131,072 Hz

2g For a 4,000 Hz sinewave, the primary FFT coefficients are H1000 and HM-1000. Additional
neighboring coefficients H999, H1001, HM-999 , and HM-1001 are non-zero (actually half the value of
the primary coefficients) due to the side lobes produced by the Hanning window.
[1 point off for omitting side lobes]  [4 points off for omitting harmonics]

2h For a 4,000 Hz symmetric square wave, a sequence of harmonics will appear at odd multiples
of the 4,000 Hz fundamental. So Hk1000 and HM-k1000 would be non-zero, and the Hanning side
lobes would be at Hk1000-1, Hk1000+1, HM-k1000-1, and HM-k1000+1.
[1 point off for omitting side lobes]  [4 points off for omitting harmonics]
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2i For a 4,002 Hz sinewave, H1000, H1001, HM-1000, and HM-1001 would be non-zero and of equal
magnitude, and the Hanning side lobes would appear at H999, H1002, HM-999  and HM-1001.
[2 points off for omitting side lobes]  [2 points off for omitting HM-1000 and HM-1001]

2j The primary 4,000 Hz sinewave would produce non-zero values at H999, H1000, and H1001. A
second smaller sinewave of slightly higher frequency 4,000 + 4m Hz would produce non-zero
values at H1000+m-1, H1000+m, and H1000+m+1 (there are also complex conjugate coefficients at HM-

1000, etc.). For the smaller sinewave to appear as a separate peak, the coefficient H1001 must be
below the coefficient at H1000-m-1, which requires 1001 < 1000 +m –1, or m >2. The smallest
value of m we can have is 3, which corresponds to a frequency 12 Hz above 4,000 Hz.
[4 points off for 4 Hz]  [3 points off for 8 Hz]  [both 12 Hz and 16 Hz were accepted]

2k A sinewave of frequency M – 84,000 Hz (M = 218) = 178,144 Hz will produce non-zero
coefficients at H20999, H21000, H21001, HM-20999, HM-21000, and HM-21001. A sinewave of frequency
84,000 Hz will produce non-zero coefficients at exactly the same frequency indexes. This is an
example of how a higher frequency can alias to a lower frequency. However, the 84,000 Hz
sinewave will be only slightly reduced by the anti-aliasing filter (gain >0.90, while the 178,144
Hz sinewave will be greatly reduced (gain ≈0.01). So the coefficients will be about 100 times
smaller for the 178,144 Hz sinewave.
[3 points off for realizing that both frequencies produce the same non-zero magnitudes but
stating that the magnitudes are the same]
[3 points off for giving a magnitude ratio of 100 but not giving the non-zero coefficients]
Note: a common mistake was to divide 178,144 Hz by 4 to get the frequency index- this is
wrong because all frequencies above the Nyquist limit of 217  Hz = 131,072 Hz are aliased to
lower frequencies.
Another common mistake was that 178,144 Hz aliases to 178,144 Hz – 131,072 Hz = 47,072
Hz. Actually HM-m aliases to Hm so 178,144 Hz aliases to 84,000 Hz.

2l To reduce the answer to 2j by a factor of two (i.e. to 6 Hz), sample for twice as long.
To reduce the answer to 2k by a factor of two (i.e. to 200 times smaller), increase the number
of stages in the anti-aliasing filter.
[Both answers were accepted]

Midterm #2 class statistics:

Problem max average rms
1   50 43.7   7.2

            2                                50                          31.6                              6.9         
total 100 75.4 11.5

Grade distribution:

Range number approximate
letter grade

31-40 0 F
41-50 1 F
51-60 1 D
61-70 3 C
71-80 8 B
81-90 9 A
91-100 1 A+


