Solutions for Midterm #2 - EECS 145M Spring 1999

1a The following are essential:

- Connect all 16 lines of one parallel output port to the input of the D/A converter
- Connect the analog output of the D/A to the analog input of the A/D
- Connect 12 lines of the output of the A/D to the parallel input port
- Connect 1 line of the other parallel output port to the A/D start conversion input
- Connect the data ready output of the A/D to one of the unused lines of the parallel input port.
- Start A/D conversion under computer program control
- Use the "Data ready" A/D output to signal the program that new data are available

1b

- 1 Set "Ready for input data" low, which makes "Data Ready" low
- 2 Start loop over all values of n from 0 to $2^{16} 1$
- 3 Write n to the D/A converter
- 4 Write a low, then a high to "Ready for input data" to start A/D conversion
- 5 Read "Data ready" in a loop until it goes high
- 6 When the A/D converter finishes, it strobes the data onto the input port and sets the "Data Ready" line high
- 7 The program detects this and reads the input port
- 8 The program sets "Ready for input data" low, which causes the A/D converter to set "Data Ready" low
- 9 If the A/D output has changed from the last value read (say from m–1 to m), store the value of n, which corresponds to the $V_{m-1, m}$ transition voltage.
- 10 Loop back to step 2
- 11 Tabulate the difference between the measured transition voltages $V_{m-1, m}$ and the ideal transition voltages V(m-1,m) = (m-0.5)(4.095V/4095) = 0.001 V (m-0.5). The maximum value is the maximum absolute accuracy error.

Essential steps: (1) vary all 16 D/A bits; (2) read A/D only after Data Ready has gone high; (3) tabulate D/A input where A/D output changes; (4) compare transition voltages with ideal

[3 points off if only 12 D/A bits are varied. The transition voltages (or the center of the steps) cannot be determined accurately unless more than 12 bits of the accuracy of the 16-bit D/A is used.]

[4 points off if the method is not automatic]

[3 points off if the transition voltages are not measured]

[3 points off if handshaking steps not indicated]

- 1c As part 1b above, but compare the measured transition voltages V_{m-1, m} (as a function of m) with the straight line passing between the first measured transition voltage V_{0,1} and the last measured transition voltage V_{4094, 4095}. The largest deviation is the maximum linearity error.
 [3 points off if the straight line is defined in terms of V_{ref}⁻ and V_{ref}⁺ (which is required for the absolute accuracy error). The maximum linearity error requires a straight line that passed through the *measured* end points]
- 1d As part 1b above, but compare the A/D step sizes $V_{m, m-1} V_{m-1, m}$ with their average value. The largest deviation is the maximum differential linearity error. Alternatively, the A/D step sizes could be determined as the number of successive D/A inputs that produce the same A/D output.

Note: It was essential to use the concept of a "table of transition voltages" to answer parts **b** and **c** of this problem.

1e Since the D/A has an absolute accuracy of ± 1 LSB, and its step size is 16 times finer than the average step size of the A/D, this design can measure the A/D transition voltages to an accuracy of $\pm 1/16$ of the A/D LSB. Therefore, the accuracy is $\pm 1/32$ A/D LSB for the maximum absolute and linear errors and $\pm 1.414/32$ A/D LSB for the maximum differential linearity error (difference between two random errors).

Note: Due to a typo on the 1997 midterm #2 solutions, ± 1 was also accepted

- 2a Filter gain >0.99 for frequencies <78,400 Hz[1 point off for giving a single frequency rather than a range]
- **2b** Filter gain <0.01 for frequencies >177,800 Hz

[1 point off for giving a single frequency rather than a range]

- $\label{eq:second} \mbox{2c} \ \mbox{S} = \mbox{M} \ \ \mbox{t} = \mbox{M}/\mbox{f}_{s} = 2^{16}/2^{18} \ \mbox{Hz} = 0.25 \ \mbox{s}$
- **2d** H_0 corresponds to 0 Hz (d.c.); H_1 corresponds to 1/S = 4 Hz
- 2e The FFT produces coefficients H_n , where n = 0 to M-1. Therefore, the coefficient with the highest index is H_{M-1} or $H_{65,535}$, which corresponds to 4 Hz.
 - [2 points off for H_M and 0 Hz] [3 points off for H_M and 2^{18} Hz]
- **2f** The FFT coefficient that corresponds to the highest frequency is $H_{M/2}$ or $H_{32,768}$. The corresponding frequency is (M/2)/S = 131,072 Hz
- **2g** For a 4,000 Hz sinewave, the primary FFT coefficients are H_{1000} and H_{M-1000} . Additional neighboring coefficients H_{999} , H_{1001} , H_{M-999} , and H_{M-1001} are non-zero (actually half the value of the primary coefficients) due to the side lobes produced by the Hanning window. [1 point off for omitting side lobes] [4 points off for omitting harmonics]
- **2h** For a 4,000 Hz symmetric square wave, a sequence of harmonics will appear at odd multiples of the 4,000 Hz fundamental. So H_{k1000} and $H_{M-k1000}$ would be non-zero, and the Hanning side lobes would be at $H_{k1000-1}$, $H_{k1000+1}$, $H_{M-k1000-1}$, and $H_{M-k1000+1}$.

[1 point off for omitting side lobes] [4 points off for omitting harmonics]

- 2i For a 4,002 Hz sinewave, H₁₀₀₀, H₁₀₀₁, H_{M-1000}, and H_{M-1001} would be non-zero and of equal magnitude, and the Hanning side lobes would appear at H₉₉₉, H₁₀₀₂, H_{M-999} and H_{M-1001}.
 [2 points off for omitting side lobes] [2 points off for omitting H_{M-1000} and H_{M-1001}]
- **2j** The primary 4,000 Hz sinewave would produce non-zero values at H_{999} , H_{1000} , and H_{1001} . A second smaller sinewave of slightly higher frequency 4,000 + 4m Hz would produce non-zero values at $H_{1000+m-1}$, H_{1000+m} , and $H_{1000+m+1}$ (there are also complex conjugate coefficients at H_{M-1000} , etc.). For the smaller sinewave to appear as a separate peak, the coefficient H_{1001} must be below the coefficient at $H_{1000-m-1}$, which requires 1001 < 1000 + m 1, or m > 2. The smallest value of m we can have is 3, which corresponds to a frequency 12 Hz above 4,000 Hz. [4 points off for 4 Hz] [3 points off for 8 Hz] [both 12 Hz and 16 Hz were accepted]
- **2k** A sinewave of frequency M 84,000 Hz (M = 2^{18}) = 178,144 Hz will produce non-zero coefficients at H₂₀₉₉₉, H₂₁₀₀₀, H₂₁₀₀₁, H_{M-20999}, H_{M-21000}, and H_{M-21001}. A sinewave of frequency 84,000 Hz will produce non-zero coefficients at exactly the same frequency indexes. This is an example of how a higher frequency can alias to a lower frequency. However, the 84,000 Hz sinewave will be only slightly reduced by the anti-aliasing filter (gain >0.90, while the 178,144 Hz sinewave will be greatly reduced (gain 0.01). So the coefficients will be about 100 times smaller for the 178,144 Hz sinewave.

[3 points off for realizing that both frequencies produce the same non-zero magnitudes but stating that the magnitudes are the same]

[3 points off for giving a magnitude ratio of 100 but not giving the non-zero coefficients]

Note: a common mistake was to divide 178,144 Hz by 4 to get the frequency index- this is wrong because all frequencies above the Nyquist limit of 2^{17} Hz = 131,072 Hz are aliased to lower frequencies.

Another common mistake was that 178,144 Hz aliases to 178,144 Hz - 131,072 Hz = 47,072 Hz. Actually H_{M-m} aliases to H_m so 178,144 Hz aliases to 84,000 Hz.

21 To reduce the answer to 2j by a factor of two (i.e. to 6 Hz), sample for twice as long.

To reduce the answer to 2k by a factor of two (i.e. to 200 times smaller), increase the number of stages in the anti-aliasing filter.

[Both answers were accepted]

Midterm #2 class statistics:

Problem	max	average	rms
1	50	43.7	7.2
2	50	31.6	6.9
total	100	75.4	11.5

Grade distribution:

Range	number	approximate
-		letter grade
31-40	0	F
41-50	1	F
51-60	1	D
61-70	3	С
71-80	8	В
81-90	9	А
91-100	1	A+