Solutions for Midterm #1 - EECS 145M Spring 2008

1 Successive-approximation A/D converter operation
 (1) set all bits zero, and bit counter \(i = N \)
 (2) set bit \(i \) to one
 (3) send all bits to D/A converter, output = \(V_0 \)
 (4) Use comparator to compare input \(V_1 \) and D/A output \(V_0 \)
 (5) if \(V_1 < V_0 \) set bit \(i \) to zero
 (6) decrease bit counter: \(i = i - 1 \)
 (7) loop back to step (2) until all bits have been determined

See Figures 3.16 and 3.17 on page 169 of the textbook

[3 points off for not describing how the binary search is done]
[3 points off for not including the D/A converter or comparator- you cannot directly compare an analog input with a digital value]

2.1

The following are essential [3 points off for each omitted]:
- Connect the analog output of the D/A to the analog inputs of all A/Ds
 Note: S/H amplifiers are not needed since the D/A can provide the hold
- Connect the 12 bit A/Ds to separate tri-state drivers
- Connect the outputs of the tri-state drivers together to form a data bus (can’t input 8 x 12 bits in parallel)
- Connect the data bus to 12 bits of the parallel input port
- Provide 8 separate output port lines for initiating conversion of the 8 A/Ds (could be combined with next signal)
• Provide 8 separate output port lines for enabling the 8 separate tri-state drivers (this was essential)
• Provide input for 8 separate input port lines to indicate when individual A/Ds have completed conversion

2.2 The steps needed to measure the first transition voltage V(0,1) for the first A/D converter.
1 set SC1 low, disable all tri-state drivers, set N = 0 (16 bits)
2 Put N on D/A
3 wait 10µs until D/A has settled [using wait(10)]
4 Put low-high edge on SC1 output line to start conversion
5 Wait until output data available
6 enable tri-state 1 (disable all others)
7 read input port to get value M
8 Put high-low edge on SC1 output port to end conversion cycle
9 if M=0, increase N by one and loop back to step 2
10 If M=1, save (D/A voltage step)(N-1/2) as the transition voltage
 [3 points off for writing to D/A and reading a value from A/D but not determining V(0,1)]

2.3 Send successive 16-bit numbers 0 to \(2^{16}−1\) to the D/A converter and convert the analog output with the A/D. Whenever the A/D output value changes, store the corresponding D/A value in a transition voltage table
Determine the D/A values corresponding to first and last A/D transition voltages, and the equation of the line that passes through them. **Linearity** is a measure of how closely the other measured transition values pass through the line.
[2 points off for determining maximum differential linearity or maximum absolute accuracy]

2.4 The method can determine the A/D accuracies to 1/16 LSB (±1/32 LSB was OK).
Note that 1 A/D LSB = 16 D/A LSBs.
[5 points off for an answer of 1/2 or 1 A/D LSB]

3.1
[2 points off if C does not show comparator pulses at frequency f]
[2 points off if D does not show the 1-second pulse]
[2 points off if Q goes high when D goes high rather than on the next edge of C after D goes high]
[2 points off if Q goes low when D goes low rather than on the next edge of C after D goes low]

Note 1: the rising and falling edges of Q are controlled by the rising edges of C which clocks D onto Q

Note 2: counter 1 is controlled by Q, not D

[2 points off if X does not show 100 MHz pulses while Q is high]
[2 points off if Y does not show comparator pulses while Q is high]
[2 points off if any pulses are shown on X and Y when Q is low]

3.2
1) Reset counters
2) Assert D high
3) Wait approximately 1 second
4) Assert D low
5) Wait for Q to go low [go to step 1) if 1-second measurement requirement is exceeded]
6) Read counters 1 and 2
7) Compute \(f = \frac{f_{\text{pulser}} \times \text{counter2}}{\text{counter1}} \)
8) Cycle back to 1) to take another measurement of \(f \).

[2 points off for not waiting for Q to go low before reading the counters- counter 1 keeps running until Q goes low]
[4 points off if calculation or formula for \(f \) is not given]
[2 points off if calculation of \(f \) does not depend on value of \(f_{\text{pulser}} \)]
[Making D low, reading counter 1 until it reaches 100 million, and taking counter 2 as the frequency was not accepted for full credit because the accuracy of this approach is much poorer than what the circuit is capable of doing]

3.3
Since the design called for a measurement of \(f \) every second, the minimum frequency is 1 Hz.
The highest frequency is given by the frequency limit of counter 2, which is 100 MHz

3.4
Since the edges on C and the 100 MHz pulses are not synchronized, counter 1 could vary by one count from measurement to measurement even if the input frequency did not change. So the uncertainty in counter 1 is 1 part in 100 million. There is no uncertainty in counter 2 – all pulses are counted exactly.

At 1 Hz the uncertainty is 10^{-8} Hz
At 100 MHz, the uncertainty is 1 Hz

EECS145M Midterm #1 class statistics:

<table>
<thead>
<tr>
<th>Problem</th>
<th>max</th>
<th>average</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>7.5</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>35.6</td>
<td>7.9</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>34.1</td>
<td>7.0</td>
</tr>
<tr>
<td>total</td>
<td>100</td>
<td>77.2</td>
<td>13.5</td>
</tr>
</tbody>
</table>

Grade distribution:

<table>
<thead>
<tr>
<th>Range</th>
<th>number</th>
<th>approximate letter grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-49</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>50-59</td>
<td>0</td>
<td>D</td>
</tr>
<tr>
<td>60-69</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>70-79</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>81-89</td>
<td>10</td>
<td>A–, B+</td>
</tr>
<tr>
<td>90-99</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>A+</td>
</tr>
</tbody>
</table>