Solutions for Midterm #2 - EECS 145M Spring 2001

1a Successive approximation A/D

1b
1. set all bits to zero
2. set index \(i = N \) (MSB)
3. set bit \(i \) to one
4. send bit pattern to D/A
5. if analog input is less than D/A output, set bit \(i \) to zero
6. \(i = i - 1 \)
7. return to step 3 (quit if \(i = 0 \))

2a Flash A/D

\[
V_{\text{ref}} + (2^N - 15) \Delta V = V_{\text{ref}} - 0.5 \Delta V
\]
2b

1. Analog input is sent to the (+) inputs of 2^{N-1} comparators.
2. (-) inputs of comparators connected to points between resistors connected in series.
3. Comparator outputs are sent to a circuit that determines the N-bit address of the highest comparator whose output is one.
4. The N-bit address is the converted output.

3a

An infinite periodic series of square pulses of width T_0 and period T_r is the convolution of the square wave $h(t)$ with an infinite periodic series of delta functions:

$$g(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_r)$$

By the Fourier convolution theorem, the Fourier transform of $h(t)$ convolved with $g(t)$ is the simple product of the individual Fourier transforms $H(f)$ and $G(f)$:

$$G(f)H(f) = \sum_{n=-\infty}^{\infty} \frac{\sin(\pi f T_0)}{\pi f T_0} \delta(f - nf_r) \quad f_r = 1 / T_r$$

This Fourier transform has the envelope of $H(f)$ but is non-zero only at integer multiples of the repeat frequency f_r.

3b For $T_0 = 1 \mu s$ and $T_r = 1 \text{ ms}$

The Fourier transform is non-zero only at integer multiples of the repeat frequency $f_r = 1 \text{ kHz}$.
4a

\[\mu \text{ computer} \quad \text{set } Tr \quad \mu \text{ computer} \quad \text{FFT} \]

4b Want filter gain \(G_1 > 0.999 \) for frequencies \(f_1 < 100 \text{ kHz} \).

From equation sheet, an 8-pole filter has a gain of 0.999 at \(f/f_c = 0.678 \)

Solve for \(f_c = f_1 / 0.678 = 147.5 \text{ kHz} \)

Want filter gain \(G_2 < 0.01 \) at the lowest frequency \(f_2 \) that could alias below \(f_1 = 100 \text{ kHz} \)

From equation sheet, an 8-pole filter has a gain of 0.01 at \(f/f_c = 1.778 \)

Solve for \(f_2 = 1.778 f_c = 262 \text{ kHz} \)

\(f_2 \) aliases to \(f_1 \) when \(f_s = f_1 + f_2 \)

To avoid aliasing we want \(f_s > 100 \text{ kHz} + 262 \text{ kHz} = 362 \text{ kHz} \)

[the requirement that \(f_s > 2 f_2 = 524 \text{ kHz} \) is more conservative than necessary but was accepted with no deduction]

4c Since we only need Fourier magnitudes at multiples of 100 Hz, the series of 1 \(\mu \text{s} \) pulses needs to contain harmonic frequencies only at multiples of 100 Hz. By choosing a pulse repetition period \(Tr = 0.01 \text{ seconds} \), the series of 1 \(\mu \text{s} \) pulses contains a fundamental frequency of 100 Hz and higher harmonic multiples of 100 Hz.

Since the number of samples \(M \) is equal to the number of Fourier magnitudes, the lowest \(M \) is achieved when the frequency spacing is \(\Delta f = 100 \text{ Hz} \). Since \(S = 1/\Delta f \), \(S = 0.01 \text{ seconds} \). By increasing the sampling frequency in part 4b from \(f_s = 362 \text{ kHz} \) to \(f_s = 409.6 \text{ kHz} \), we will have \(M = 4096 \text{ samples} \) (and Fourier magnitudes) in 0.01 seconds.

4d \(H_n \) is the Fourier coefficient at the frequency \(f_n = n 100 \text{ Hz} \)

\[
\frac{V_{out}}{V_{in}} = \frac{1}{H_0} \sqrt{\left[\text{Re}(H_n) \right]^2 + \left[\text{Im}(H_n) \right]^2}
\]

\(H_0 = \frac{\sin(\pi \mu \text{s } f_n)}{(\pi \mu \text{s } f_n)} \)

Note 1: The gain is computed as the output amplitude (Fourier magnitude) divided by the input magnitude of the 1 \(\mu \text{s} \) pulses at that frequency. The response of the Butterworth anti-aliasing filter does not enter because its gain is >0.999 below 100 kHz.

Note 2: The gain is normalized to 1 at zero frequency
Midterm #2 class statistics:

<table>
<thead>
<tr>
<th>Problem</th>
<th>max</th>
<th>average</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>15.1</td>
<td>5.2</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>15.3</td>
<td>5.3</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>14.4</td>
<td>5.6</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>26.8</td>
<td>6.1</td>
</tr>
<tr>
<td>total</td>
<td>100</td>
<td>71.5</td>
<td>14.4</td>
</tr>
</tbody>
</table>

Grade distribution:

<table>
<thead>
<tr>
<th>Range</th>
<th>number</th>
<th>approximate letter grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>46-50</td>
<td>2</td>
<td>C–</td>
</tr>
<tr>
<td>51-55</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>56-60</td>
<td>2</td>
<td>C+</td>
</tr>
<tr>
<td>61-65</td>
<td>1</td>
<td>B–</td>
</tr>
<tr>
<td>66-70</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>71-75</td>
<td>2</td>
<td>B+</td>
</tr>
<tr>
<td>76-80</td>
<td>1</td>
<td>A–</td>
</tr>
<tr>
<td>81-85</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>86-90</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>91-95</td>
<td>1</td>
<td>A+</td>
</tr>
<tr>
<td>96-100</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

6 A’s; 5 B’s; 4 C’s