EECS 145L Final Examination Solutions (Fall 2002)

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering, Electrical Engineering and Computer Sciences Department

- **1a Johnson noise** is produced by the thermal agitation of electrons in a resistor while shot noise arises from statistical fluctuations in the number of electrons per unit time
- **1b** The **sensor** transduces a physical quantity into an electrical signal and the **actuator** transduces an electrical signal into a physical quantity
- **1c** The **Thompson emf** is caused by a temperature gradient along the length of a conductor that causes the electrons to move to the colder end while the **Peltier emf** is produced when materials with two different electron mobilities are brought in contact and the electrons move to the material with the lower mobility.
- 1d The thermocouple consists of two dissimilar wires joined at their ends and converts a temperature difference into a potential while the Peltier thermoelectric heat pump consists of a doped semiconductor and converts a current into a temperature difference
- **1e** The **EMG** is an electrical signal produced by skeletal muscle and has a random, noisy waveform while the **ECG** is an electrical signal produced by the heart muscle and consists of a periodic series of pulses.
- 1f A beta ray is a moving electron while an x-ray is an energetic photon (typically 1-100 keV).
 [4 points off for not mentioning electron vs. photon]
 [4 points off for not mentioning difference in penetrating power]

2a

$$V_{0} = V_{1} \left(\frac{R_{2} + R_{3}}{R_{3}}\right) \left(\frac{1/j\omega C}{1/j\omega C + R_{1}}\right) = V_{1} \left(\frac{R_{2} + R_{3}}{R_{3}}\right) \left(\frac{1}{1 + j\omega R_{1}C}\right) = \left(\frac{R_{2} + R_{3}}{R_{3}}\right) \left(\frac{1 - j\omega R_{1}C}{1 + (\omega R_{1}C)^{2}}\right)$$
$$\left|\frac{V_{0}}{V_{1}}\right| = \left(\frac{R_{2} + R_{3}}{R_{3}}\right) \left(\frac{\sqrt{1 + (\omega R_{1}C)^{2}}}{1 + (\omega R_{1}C)^{2}}\right) = \left(\frac{R_{2} + R_{3}}{R_{3}}\right) \left(\frac{1 - j\omega R_{1}C}{1 + (\omega R_{1}C)^{2}}\right)$$

2b At 0 Hz, Gain = 10, so $R_2 = 9 \text{ k}\Omega$ and $R_3 = 1 \text{ k}\Omega$ is suitable Gain falls 3 dB to 7.07 at $f = 1/(2\pi R_1 C) = 1 \text{ kHz}$, so $R_1 C = 0.159 \text{ ms}$ Choosing $R_1 = 10 \text{ k}\Omega$, we have $C = 0.0159 \text{ }\mu\text{F} = 15.9 \text{ nF}$

2c

$$\frac{V_1}{R_1} = -V_0 \left(1 / R_2 + j \omega C \right)$$

$$\frac{V_0}{V_1} = \frac{-1}{R_1(1/R_2 + j\omega C)} = \frac{-R_2}{R_1} \left(\frac{1}{1 + j\omega R_2 C}\right) = \frac{-R_2}{R_1} \left(\frac{1 - j\omega R_2 C}{1 + (\omega R_2 C)^2}\right)$$

December 19, 2002

EECS 145L Final Examination Solutions (Fall 2002)

$$\left|\frac{V_{0}}{V_{1}}\right| = \left(\frac{R_{2}}{R_{1}}\right) \left(\frac{\sqrt{1 + (\omega R_{2}C)^{2}}}{1 + (\omega R_{2}C)^{2}}\right) = \frac{\left(R_{2}/R_{1}\right)}{\sqrt{1 + (\omega R_{2}C)^{2}}}$$

2d At 0 Hz, Gain = 10, so $R_1 = 10 \text{ k}\Omega$ and $R_2 = 100 \text{ k}\Omega$ is suitable Gain falls 3 dB to 7.07 at $f = 1/(2\pi R_2 C) = 1 \text{ kHz}$, so $R_2 C = 0.159 \text{ ms}$ Since $R_2 = 100 \text{ k}\Omega$, we have $C = 0.00159 \mu F = 1.59 \text{ nF}$

3a

[6 points off for no instrumentation amplifier]

3b

[6 points off for no instrumentation amplifier]

EECS 145L Final Examination Solutions (Fall 2002)

$$V_{+} - V_{-} = \frac{100}{100 + 100(1 + 0.004T)} - \frac{100}{200} = \frac{1}{2 + 0.004T} - \frac{1}{2}$$
$$= \frac{0.5}{1 + 0.002T} - \frac{0.5}{1} = 0.5 \approx 0.5(1 - 0.002T) - 0.5 = 0.001T \text{(volts)}$$

The bridge sensitivity is $1 \text{ mV} / \text{C}^{\circ}$ and a gain of 10 is needed to increase the sensitivity to $10 \text{ mV} / \text{C}^{\circ}$.

3c

3e

 $R = 1 k\Omega$ would be suitable

[3 points off for subtracting V_{tc} and V_{pt} rather than adding.]

[1 point off for $V_{out} = -V_{pt} - V_{tc}$]

December 19, 2002

4a

- **4b** $R = 100 \ \Omega$ $R_{\rm S} = {\rm R} + \Delta R$ $V + -V - = V_{\rm b} \left[({\rm R} + \Delta {\rm R})/(\Delta {\rm R} + 2R) - ({\rm R})/(\Delta {\rm R} + 2R) \right] =$ $V_{\rm b} (\Delta {\rm R}) /(\Delta {\rm R} + 200) \approx V_{\rm b} \Delta {\rm R}/(2{\rm R})$
- 4c Voltage across each strain gauge $\approx V_b/2$ (since $\Delta R \ll R$) Power = $(V_b/2)^2/100 \ \Omega < 0.25 \ W$ want highest V_b for sensitivity but power limits $V_b < 10$ volts (5 volts was accepted) [6 points off for "does not matter"] [4 points off for 1V and not considering max power]
- **4d** $\Delta T = 1 \,^{\circ}C \text{ means } \Delta L/L = 23 \text{ ppm and } \Delta R/R = 46 \text{ ppm.}$ $V_+ - V_- = (10 \text{ volts})(23 \text{ ppm}) = 230 \,\mu V/^{\circ}C$ (115 $\mu V/^{\circ}C$ for 5 V bias)
- 4e noise is 10 μ V at 1 MHz- Δ T = 1/23 C° = 43 x 10⁻³ °C noise is 10 nV at 1 Hz Δ T = 1/23,000 C° = 43 x 10⁻⁶ °C

145LFinal Examination score distribution:

70-79	0	80-89	1	90-99	0
100-109	0	110-119	0	120-129	0
130-139	1	140-149	1	150-159	4
160-169	1	170-179	3	180-189	5
190-199	7	200 1			

19 undergraduates: average = 173.4, rms = 26.0 5 other students (1 graduate , 2 extension, 2 exchange) : average = 176.0, rms = 21.0

145L Course Grade Distribution

Grade	Undergraduate Scores	Other Scores
A+ A A-	974 950, 952. 960, 972 918, 923, 923, 927, 938, 940	982 913, 923, 932
B+ B B-	901, 907 869, 873, 881 835, 844	895
C+ C C-		
D+ D D-		
F	463	
Maximum Average rms	1000 892.0 111.5	1000 929.0 32.7