Midterm #2 Solutions – EECS 145L Fall 2001

1a Technical requirements of a ground fault interrupter circuit:

(i) open both current carrying power conductors (hot and neutral) when the the difference in their currents exceeds 5 mA $\,$

- (ii) provide a reset button
- (iii) provide a test button
- [5 points off for describing the circuit breaker]
- [1 points off each for missing the reset or test features]
- **1b** How the ground fault interrupter circuit functions:
 - (i) the difference in currents is converted into a 60 Hz voltage using a differential transformer
 - (ii) this voltage is rectified and amplified
 - (iii) the resulting dc voltage trips two relays which hold both conductors open until reset
 - (iv) the test button sends a 5 mA current through differential transformer
 - [1 point off for no test button]
- **2a** Since $R_2/(R_1+R_2) = R_3/(R_T+R_3)$, $R_2 = R_3$, and $R_T = 10 \text{ k}\Omega$ at 20°C the solution is $R_1 = 10 \text{ k}\Omega$.
- **2b** $P = V_T^2/R = (0.5 \text{ volts})^2/(10 \text{ k}\Omega) = 25 \text{ }\mu\text{W}$
- **2 c** Amplifier output of 0.05 volts means a bridge output $V_+-V_- = 0.01$ volts. Using the bridge equation (supplied on the equation sheets), we have RT = $(10000 \ \Omega)^*(10000 \ \Omega 0.01^*20,000 \ \Omega)$ =9608 Ω

[1 point off for not dividing by the amplifier gain]

[3 points off for assuming a linear response from 0 °C and 0 Ω to 20 °C and 10 k Ω]

- **2d** $T = 20^{\circ}\text{C} + (9608 \ \Omega 10000 \ \Omega)/(-300 \ \Omega/\text{C}^{\circ}) = 21.3^{\circ}\text{C}$
- 2 e $V_T = 1 10000 \Omega / (10000 \Omega + 9608 \Omega) = 0.490$ volts $P = (0.490 \text{ volts})^2 / (9608 \Omega) = 24.99 \mu W (25 \mu W \text{ was accepted for full credit})$
- $I = (0.490 \text{ Volts})^{-}/(9008 \text{ S}^2) = 24.99 \text{ µW} (25 \text{ µW} \text{ was accepted for run of the second second$
- **2 f** Dissipation coefficient = $25 \mu W/(21.3^{\circ}C 20^{\circ}C) = 19 \mu W/^{\circ}C$

[3 points off if bridge is drawn but gauges are reversed]

$$3c V_0 = \frac{R_P}{R_P + R_N} - \frac{R_N}{R_P + R_N} = \frac{(R + \Delta R_P) - (R + \Delta R_N)}{2R + \Delta R_P + \Delta R_N}$$
$$V_0 = \frac{\Delta R_P / R - \Delta R_N / R}{2 + \Delta R_P / R + \Delta R_N / R} = \frac{200\Delta L / L}{2 + 20,000(\Delta L / L)^2} = \frac{100\Delta L / L}{1 + 10,000(\Delta L / L)^2}$$

[a common error was to write down the bridge equation and then plug in terms like

 $R_{\rm p} = R_0 (100 \ \Delta L/L + 10,000 \ (\Delta L/L)^2)$

3 d For
$$V_s = 1$$
 volt, bridge sensitivity is 0.1 mV per μ strain

3 e The Johnson noise in a single $10 \text{ k}\Omega$ resistor is given by

> $V_{Irms} = 1.29 \text{ x } 10^{-10} \text{ V}\Omega^{-1/2} \text{ Hz}^{-1/2} \text{ sqrt}(10 \text{ k}\Omega \text{ 16 Hz}) = 1.29 \text{ x } 10^{-10} \text{ x } 400 \text{ V} = 5.16 \text{ x } 10^{-8} \text{ V}$ The bias and ground points are at a fixed voltage, so the Johnson noise in two of the resistors adds a Johnson noise voltage in quadrature to V- and the Johnson noise in the other two resistors adds a Johnson noise in quadrature to V+. (Note that the bridge equation describes how external average voltages are distributed to produce V- and V+)

 $100\Delta L/L$

$$V_{-\rm rms} = \sqrt{V_{\rm Jrms}^2 + V_{\rm Jrms}^2} \qquad V_{+\rm rms} = \sqrt{V_{\rm Jrms}^2 + V_{\rm Jrms}^2}$$

The Johnson noise in $V_0 = V_+ - V_-$ is given by adding the noise of the individual components in quadrature:

$$V_{0rms} = \sqrt{V_{+rms}^2 + V_{-rms}^2} = \sqrt{4V_{Jrms}^2} = 2V_{Jrms}$$

This is 0.103 μ V rms, which corresponds to Δ L/L $\approx 10^{-9}$ rms.

[2 points off for giving the rms equivalent strain due to the Johnson noise in only one resistor] [3 points off for giving the rms voltage noise from one resistor but not relating it to rms strain] [4 points off for writing down the Johnson noise equation and using it improperly or incompletely]

145L midterm #2 undergraduate grade distribution:

Problem		31-40		
1	13.0 (20 max)	41-50	1	D
2	34.9 (40 max)	51-60	1	С
3	29.6 (40 max)	61-70	3	B-
total	77.4 (100 max)	71-80	8	В
		81-90	4	А
		91-100	3	A+

3b