N.Cheung, Spring 99

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

EECS143 Midterm Exam #1

Family Name	First name
Signature	
Instructions: DO ALL WORK ON EXAM	I PAGES
Creading: To obtain full aredit show com	nost units and algebraic sign in answers
Numerical answers which are of	rders of magnitude off will receive no partial credit.
Problem 1 (30 points)	
Problem 2 (20 points)	
Problem 3 (25 points)	
Problem 4 (25 points)	
TOTAL (100 points)	-

Problem 1 Oxidation (30 points total)

(a) (15 points) A lightly doped Si wafer was processed by some unknown IC processing steps. After these unknown steps, you performed a thermal oxidation experiment [fixed temperature and fixed oxidizing ambient] with this wafer and observed the following results:

Oxidation Time	SiO2 Thickness
0 hour	0
1 hour	2000 Å
4 hours	2500 Å

Are the following conjectures TRUE or FALSE ? You have to give brief explanations to justify your answers.

Conjecture 1 : The processed Si wafer was oxidized first to an oxide thicknes of 100 Å and then have the oxide dissolved in HF.

Conjecture 2 : The processed Si wafer has a highly doped surface layer (doping > $10^{19}/\text{cm}^3$) which is less than 1000 Å thick.

Conjecture 3 : The processed Si wafer has a thin layer of poly-Si layer on top surface.

Problem 1 continued

(b)(7 points) A pure Si spherical particle of radius 1 μ m is oxidized completely, what is the radius of the SiO₂ sphere formed ?

(c) (8 points) Discuss the advantages and disadvantages of using the Local Oxidation (LOCOS) process

ADVANTAGES

DISADVANTAGES

Problem2 Ion Implantation (20 points total)

(a) (10 points) Self-aligned source and drain of a MOSFET is formed by ion implantation of phosphorus. If the gate has a tapered sidewall with angle θ , indicate in the following table whether the electrical channel length L will increase or decrease or no change (\uparrow = increase, \downarrow = decrease, 0 = no

change) when one of the parameters changes while the others remain constant.

Parameter	Electrical Channel Length L
Implant Dose ↑	
Substrate conc. N_B^{\uparrow}	
Sidewall Angle $\theta \uparrow$	
Gate material changed from poly-Si to Tungsten	
Implant ions changed from Phosphorus to Arsenic (same energy)	

(b) (5 points) Explain why we need an additional annealing step at >900C after implantation of dopants.

(c) (5 points) We would like to form ultra-shallow junctions, discuss two methods used in IC processing to minimize the ion channeling effect

Problem 3 Diffusion (25 points total)

(A) (15 points) Boron is diffused into a Si substrate having a background phosphorus concentration of 10^{16} /cm³. The measured junction depth (x_i) is 0.7 µm and the sheet resistance is 5 Ω/square.

Since we do not have information about the boron depth profile, we make up two approximations:

Profile 1: The profile is an erfc function with $(Dt)^{1/2} = 0.1 \mu m$

Profile 2: The profile is a rectangular profile with constant concentration from surface to x_j.

Calculate the surface concentration of boron for both profiles. The hole mobility can be taken as constant ($= 60 \text{ cm}^2 / \text{V-s}$) for all depths. Based on the surface concentration values, which profile is a better approximation ?

(b) During the initial stage of diffusion, the doped region is intrinsic (n = p) so we won't expect to see any high concentration diffusion effect. However, Boron diffuses faster than As and the near surface region becomes highly n-doped and the deeper region becomes p-doped. Since the **net** carrier concentration can still be higher than n_i , we will start to observed high concentration diffusion effects in both regions. (B)(10 points) The surface region of a Si wafer contains **two identical concentration depth profiles** of Boron and Arsenic. Both profiles can be considered as having high concentration ($\sim 10^{20}$ /cm³ near the peak region)

(i) Do you expect to observe *high concentration diffusion effects* when the wafer is heated at 1000 °C for short diffusion times? Explain with a sketch.

(i) Do you expect to observe *high concentration diffusion effects* when the wafer is heated at 1000 °C for long diffusion times ? Explain with a sketch.

Problem 4 Lithography (25 points total)

(a) (15 points) Two diagonal alignment marks A1 and A2 along the x-axis near the edge of a wafer with 4-inch diameter have overlay errors (x₁, y₁) and (x₂, y₂) respectively.

 x_1, x_2, y_1 and y_2 are defined as + along the positive x and y directions.

 (x_1, y_1) and (x_2, y_2) are measured to be (+0.2, +0.2) um and (+0.4, +0.4) um.Calculate numerical values of :

(i) Run in/out misalignment.

(ii) Rotational misalignment.

(iii) Translational misalignment.

(B) For a particular lithography process based on projection printing, the minimum resolution (l_m) is 0.5um and the depth of focus (DOF) is 1um. By placing a smaller aperture over the projection lens, the numerical aperture (NA) is reduced by a factor of 2, calculate the new values of l_m and DOF.