UNIVERSITY OF CALIFORNIA
 College of Engineering
 Department of Electrical Engineering and Computer Sciences

EECS143 Midterm Exam \#1
\qquad
Signature \qquad

Instructions: DO ALL WORK ON EXAM PAGES
This is a 90-minute exam (open reader materials and homework).

Grading: To obtain full credit, show correct units and algebraic sign in answers.
Numerical answers which are orders of magnitude off will receive no partial credit.
Problem 1 (30 points) \qquad

Problem 2 (20 points) \qquad
Problem 3 (25 points) \qquad

Problem 4 (25 points) \qquad
TOTAL (100 points) \qquad

Problem 1 Oxidation (30 points total)

(a) (15 points) A lightly doped Si wafer was processed by some unknown IC processing steps. After these unknown steps, you performed a thermal oxidation experiment [fixed temperature and fixed oxidizing ambient] with this wafer and observed the following results:

Oxidation Time	SiO2 Thickness
0 hour	0
1 hour	$2000 \AA$
4 hours	$2500 \AA$

Are the following conjectures TRUE or FALSE? You have to give brief explanations to justify your answers.

Conjecture 1: The processed Si wafer was oxidized first to an oxide thicknes of $100 \AA$ and then have the oxide dissolved in HF.

Conjecture 2: The processed Si wafer has a highly doped surface layer (doping > $10^{19} / \mathrm{cm}^{3}$) which is less than 1000 Å thick.

Conjecture 3 : The processed Si wafer has a thin layer of poly-Si layer on top surface.

Problem 1 continued

(b)(7 points) A pure Si spherical particle of radius $1 \mu \mathrm{~m}$ is oxidized completely, what is the radius of the SiO_{2} sphere formed?
(c) (8 points) Discuss the advantages and disadvantages of using the Local Oxidation (LOCOS) process ADVANTAGES

DISADVANTAGES

Problem 2 Ion Implantation (20 points total)

p substrate
(a) (10 points) Self-aligned source and drain of a MOSFET is formed by ion implantation of phosphorus. If the gate has a tapered sidewall with angle θ, indicate in the following table whether the electrical channel length L will increase or decrease or no change ($\uparrow=$ increase, $\downarrow=$ decrease, $0=$ no change) when one of the parameters changes while the others remain constant.

Parameter	Electrical Channel Length L
Implant Dose \uparrow	
Substrate conc. $\mathrm{N}_{\mathrm{B}} \uparrow$	
Sidewall Angle $\theta \uparrow$	
Gate material changed from poly-Si to Tungsten	
Implant ions changed from Phosphorus to Arsenic (same energy)	

(b) (5 points) Explain why we need an additional annealing step at $>900 \mathrm{C}$ after implantation of dopants.
(c) (5 points) We would like to form ultra-shallow junctions, discuss two methods used in IC processing to minimize the ion channeling effect

Problem 3 Diffusion (25 points total)

(A) (15 points) Boron is diffused into a Si substrate having a background phosphorus concentration of $10^{16} / \mathrm{cm}^{3}$. The measured junction depth $\left(\mathrm{x}_{\mathrm{j}}\right)$ is $0.7 \mu \mathrm{~m}$ and the sheet resistance is $5 \Omega /$ square.

Since we do not have information about the boron depth profile, we make up two approximations:
Profile 1: The profile is an erfc function with $(\mathrm{Dt})^{1 / 2}=0.1 \mu \mathrm{~m}$
Profile 2: The profile is a rectangular profile with constant concentration from surface to x_{j}.
Calculate the surface concentration of boron for both profiles. The hole mobility can be taken as constant ($=60 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}$) for all depths. Based on the surface concentration values, which profile is a better approximation?
(b) During the initial stage of diffusion, the doped region is intrinsic ($\mathrm{n}=\mathrm{p}$) so we won't expect to see any high concentration diffusion effect. However, Boron diffuses faster than As and the near surface region becomes highly n-doped and the deeper region becomes p-doped. Since the net carrier concentration can still be higher than n_{i}. we will start to observed high concentration diffusion effects in both regions.
(B)(10 points) The surface region of a Si wafer contains two identical concentration depth profiles of Boron and Arsenic. Both profiles can be considered as having high concentration $\left(\sim 10^{20} / \mathrm{cm}^{3}\right.$ near the peak region)
(i) Do you expect to observe high concentration diffusion effects when the wafer is heated at 1000 ${ }^{\circ} \mathrm{C}$ for short diffusion times? Explain with a sketch.
(i) Do you expect to observe high concentration diffusion effects when the wafer is heated at 1000 ${ }^{\circ} \mathrm{C}$ for long diffusion times ? Explain with a sketch.

Problem 4 Lithography (25 points total)

(a) (15 points) Two diagonal alignment marks A 1 and A 2 along the x -axis near the edge of a wafer with 4-inch diameter have overlay errors $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ respectively.

x_{1}, x_{2}, y_{1} and y_{2} are defined as + along the positive x and y directions.

$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are measured to be $(+0.2,+0.2)$ um and $(+0.4,+0.4)$ um. Calculate numerical values of :
(i) Run in/out misalignment.
(ii) Rotational misalignment.
(iii) Translational misalignment.
(B) For a particular lithography process based on projection printing, the minimum resolution $\left(l_{m}\right)$ is 0.5 um and the depth of focus (DOF) is $1 u m$. By placing a smaller aperture over the projection lens, the numerical aperture (NA) is reduced by a factor of 2 , calculate the new values of 1_{m} and DOF.

