University of California
 College of Engineering
 Department of Electrical Engineering and Computer Science

Jan M. Rabaey
TuTh11:00-12:30pm

EECS 141: SPRING 04—MIDTERM 1

NAME	Last	First

SID	

Problem 1 (on 11):
Problem 2 (on 12):
Problem 3 (on 9):

PROBLEM 1: MOSFET Devices (11 points)

Two MOSFETs fabricated in a long channel process are tested to determine their I/V characteristics. Both devices have $\mathrm{W} / \mathrm{L}=2.4 \mu \mathrm{~m} / 1.2 \mu \mathrm{~m}$. Measured drain currents for different values of VGS and VDS are as follows (VSB = 0 in all cases):

Condition:	$\left\|\mathbf{I}_{\mathbf{D}}\right\|$ - MOSFET A	$\left\|\mathrm{I}_{\mathrm{D}}\right\|-$ MOSFET B
VGS $=0 \mathrm{~V}, \mathrm{VDS}=0 \mathrm{~V}$	0 A	0 A
VGS $=-1 \mathrm{~V}, \mathrm{VDS}=-2 \mathrm{~V}$	$20 \mu \mathrm{~A}$	0 A
VGS $=1 \mathrm{~V}, \mathrm{VDS}=1 \mathrm{~V}$	0 A	$45 \mu \mathrm{~A}$
VGS $=1 \mathrm{~V}, \mathrm{VDS}=0.02 \mathrm{~V}$	0 A	$4 \mu \mathrm{~A}$
VGS $=-2 \mathrm{~V}, \mathrm{VDS}=-2 \mathrm{~V}$	$200 \mu \mathrm{~A}$	0 A

a. (6 points) Determine the device parameters to complete the following table. Assume $\lambda=0$ for both devices.

Parameter:	MOSFET A	MOSFET B
NMOS or PMOS?		
VT0		
k^{\prime}		

b. (5 points) This fabrication process is now used to make the inverter shown below. On the following graph, sketch the approximate response at $\mathrm{V}_{\text {out }}$ for a rising input step until the transient settles. You may neglect the intrinsic transistor capacitances.
Indicate the region of operation of the two transistors as the transient progresses.
Determine precisely the times at which any changes in region of operation occur, and indicate those times on the chart.

Problem 2: Propagation delay and energy consumption (12 points)

Consider the following circuit. Both PMOS transistor M_{1} and NMOS transistor M_{2} have the same size with $\mathrm{W}=0.36 \mu \mathrm{~m}$ and $\mathrm{L}=0.24 \mu \mathrm{~m} . \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=10 \mathrm{pF} . \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$. Use the transistor parameters, defined in Table 3.2 of the textbook. However, you may assume that both the body-effect coefficient γ and the channel length modulation factor λ equal 0 .

Table 3.2 Parameters for manual model of generic $0.25 \mu \mathrm{~m}$ CMOS process (minimum length device).

	$V_{T 0}(\mathrm{~V})$	$\gamma\left(\mathrm{V}^{0.5}\right)$	$V_{D S A T}(\mathrm{~V})$	$\boldsymbol{k}^{\prime}\left(\mathrm{A} / \mathrm{V}^{2}\right)$	$\lambda\left(\mathrm{V}^{-1}\right)$
NMOS	0.43	0.4	0.63	115×10^{-6}	0.06
PMOS	-0.4	-0.4	-1	-30×10^{-6}	-0.1

a. (2 points) Assume that Vout is initially at $0 . \mathrm{V}_{\text {in }}$ now experiences a sharp rise from 0 to V_{DD}. Determine the final voltage at $\mathrm{V}_{\text {out }}$ after all transients have settled.

$$
\mathrm{V}_{\text {out }}(\mathrm{t}=\infty)=
$$

b. (2 points) Determine the propagation delay when $\mathrm{V}_{\text {in }}$ makes a low-to-high transition as described in part a. You can neglect the transistor capacitances of M_{1} and M_{2} because the load capacitances $\mathrm{C}_{\mathrm{L} 1}$ and $\mathrm{C}_{\mathrm{L} 2}$ are orders of magnitude larger.

$$
\mathrm{t}_{\mathrm{p}}=
$$

c. (2 points) Determine the propagation delay when Vin transitions from Vdd to 0. Assume the same assumptions as in part b.

$$
\mathrm{t}_{\mathrm{p}}=
$$

d. (4 points) Determine $E_{\text {LH }}$ (the energy dissipated in the transistors when $V_{\text {in }}$ makes a low-to-high transition) and E_{HL} (the energy dissipated in the transistors when $\mathrm{V}_{\text {in }}$ makes a high-to-low transition).

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{LH}}= \\
& \mathrm{E}_{\mathrm{HL}}=
\end{aligned}
$$

e. (2 points) In one sentence explain how you would reduce the propagation delay from $V_{\text {in }}$ to $V_{\text {out }}$. Is there a limit using this method? If the answer is yes, give the lower limit of the propagation delay using only a few words. No calculation is needed.

Problem 3: Voltage Transfer Characteristic (9 points)

Consider the diode circuit shown below. The I-V characteristic of the diodes is given by the chart on the right side.

a. (2 point) Determine the value of Vout for Vin $=0 \mathrm{~V}$.

$$
\mathrm{V}_{\text {out }}\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)=
$$

b. (2 point) What is the value of Vout when Vin $=2 \mathrm{~V}$.

$$
V_{\text {out }}\left(V_{\text {in }}=2 V\right)=
$$

c. (2 points) Draw the complete voltage transfer characteristic of the gate (for $\mathrm{V}_{\text {in }}$ going from 0 to 2V).

d. (1 points) Revisit question (a), assuming now that the gate has a fanout of one identical gate.
$\mathrm{V}_{\text {out }}\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)=$
e. (2 points) Revisit question (b), assuming that the gate has a fanout of one identical gate.

$$
\mathrm{V}_{\text {out }}\left(\mathrm{V}_{\text {in }}=2 \mathrm{~V}\right)=
$$

