

University of California
College of Engineering
Department of Electrical Engineering and Computer Sciences
E. Alon

Tuesday, October 6, 2009
6:30-8:00pm

EECS 141: FALL 2009—MIDTERM 1

For all problems, you can assume that all transistors have a channel length of 90nm and the following parameters (unless otherwise mentioned):

NMOS:
$V_{T n}=0.2 \mathrm{~V}, \mu_{\mathrm{n}}=400 \mathrm{~cm}^{2} /(\mathrm{V} \cdot \mathrm{s}), \mathrm{C}_{\mathrm{ox}}=1.125 \mu \mathrm{~F} / \mathrm{cm}^{2}, v_{\mathrm{sat}}=1 \mathrm{e} 7 \mathrm{~cm} / \mathrm{s}, \lambda=0$
PMOS:
$\left|V_{T p}\right|=0.2 \mathrm{~V}, \mu_{\mathrm{p}}=200 \mathrm{~cm}^{2} /(\mathrm{V} \cdot \mathrm{s}), \mathrm{C}_{\mathrm{ox}}=1.125 \mu \mathrm{~F} / \mathrm{cm}^{2}, v_{\mathrm{sat}}=1 \mathrm{e} 7 \mathrm{~cm} / \mathrm{s}, \lambda=0$

| NAME | Last Solutiuns \quad First |
| :--- | :--- | :--- |

GRAD/UNDERGRAD	

Problem 1: \qquad / 30

Problem 2: \qquad / 20

Problem 3: \qquad / 20

Total: \qquad / 70

PROBLEM 1. Logical Effort and Gate Sizing (30 points)

a) ($6 \mathbf{p t s}$) What is the path effort from In to Out?

$$
\begin{array}{ll}
F=300 \mathrm{fF} / 5 \mathrm{fF}=60 & P E=F \cdot \pi L E \cdot \pi B \\
\pi L E=2 \cdot 5 / 3=10 / 3 & P E=400
\end{array}
$$

$$
\pi B=2
$$

b) (2 pts) What EF/stage minimizes the delay of this chain of gates?

$$
\begin{aligned}
& E F_{\text {up }}=\sqrt[5]{P E} \\
& E F_{\text {ut }} \approx 3.31
\end{aligned}
$$

c) $\mathbf{(8} \mathbf{~ p t s})$ Size the gates to minimize the delay from In to Out.

$$
\begin{aligned}
& d=\frac{300 \mathrm{fF}}{3.31} \approx 90.63 \mathrm{fF} \\
& c=\frac{d}{3.31} \approx 27.38 \mathrm{fF} \\
& b=\frac{5}{3} \cdot \frac{c}{3.31} \approx 13.79 \mathrm{ff} \\
& a=2 \cdot \frac{b}{3.31} \approx 8.33 \mathrm{fF}
\end{aligned}
$$

Size	Value (fF)
a	8.33
b	13.79
c	27.38
d	90.63

d) (6 pts) While maintaining the same logical functionality and without changing C_{in}, can you improve the delay of this chain of gates (repeated below) by changing the number and/or types of gates? Please draw an improved schematic for the new chain of gates; you don't need to provide gate sizes.

Original chain:

Improved chain:
Optima number of stages: $l_{\text {cay }}(400)=4.32$
So, 5 stages is about right. However, we have
a 4-imput NAND (which has large LE) at
the beyorwiry of the chair, aud we also have
a burin of invokers. Sc, ir order tu reduce
the $L E$, we cur replace the 4 -input gate with a cascade of 2-irput gates and
inverters:

e) (8 pts) Now let's imagine that you are working in a new technology where the γ $\left(=\mathrm{C}_{\mathrm{D}} / \mathrm{C}_{\mathrm{G}}\right)$ of the transistors is 100 . Now how would you redesign the chain of gates in order to improve its delay? Please draw an improved schematic for the new chain of gates; you don't need to provide gate sizes. (You will receive partial credit if you can explain in general how γ should affect the design of the chain.)

Remember that delay optimal f (ard equivalently, $(E F)$ is set coly by γ :

$$
\begin{aligned}
& f=e^{(1+\gamma / f)} \\
& \gamma=100 \rightarrow f \approx 37.9
\end{aligned}
$$

I~ other words, with such a large γ, the optimal forint is also substurtinlly lurgor thun 4. Therofuro, the optimal amber of stages will be much smaller:

$$
N_{\text {cp }}=\log _{37.9}(P E) \approx 1.65
$$

To get the logical polarity right, this would lead us to a 1 stage implementation:

PROBLEM 2. (20 pts) Complex Gates and Delay.
a) (4 pts) Implement the function $F=\overline{((A \cdot B)+C) \cdot D}$ with a complex static CMOS gate.

b) (4 pts) Assuming $\mathrm{R}_{\text {sqp }}=\mathrm{R}_{\text {sqn }}$, size your gate so that the worst-case pull up resistance is equal to the worst-case pull-down resistance. What is the logical effort of this gate from the A input?

c) (12 pts) Using the switch model for the transistors, what is the worst-case delay of the gate shown below? You can assume that $\mathrm{C}_{\mathrm{G}}=\mathrm{C}_{\mathrm{D}}=2 \mathrm{fF} / \mu \mathrm{m}, \mathrm{R}_{\text {sqq }}=$ $10 \mathrm{k} \Omega / \square$, and $\mathrm{R}_{\mathrm{sqp}}=20 \mathrm{k} \Omega / \square$, and you should provide your answer in ps.

The first thing tu realize here is that the wurst-cuse delay occurs when $A=B=1$ and \angle goes from 1 to 0 .
(You cur see this by noticing that in this cause a sirgle Poos transistor has to drove all of the intermuil caps of the stuck.)
$R C$ model:

$$
\begin{aligned}
& R_{p}=20 \mathrm{k} \Omega / \square \cdot \frac{9 u_{N m}}{1 \mu_{m}}=1.8 \mathrm{k} \Omega \\
& R_{N}=10 \mathrm{k} \Omega / \mathrm{I} \cdot \frac{90 \pi m}{1.5 \mu m}=600 \Omega
\end{aligned}
$$

$$
\left.C_{D p}=2 \mathrm{fF}\right)_{\mu m} \cdot 1_{\mu m}=2 \mathrm{fF}
$$

$$
C_{D N}=2 \mathrm{fF} / \mu m \cdot 1.5 \mu m=3 \mathrm{FF}
$$

$$
C_{G N}=C_{B N}=3 f f
$$

$$
\begin{aligned}
& t_{p}=\ln _{\sim}(2) \cdot R_{p} \cdot\left(3 C_{D p}+5 C_{O N}+2 C_{G W}\right) \\
& t_{p}=1 w(2) \cdot 1.8 k \Omega \cdot(6 f f+15 f f+6 f f) \\
& t_{p} \approx 33.7_{p s}
\end{aligned}
$$

PROBLEM 3. (20 pts) Miscellaneous
a) ($\mathbf{8} \mathbf{p t s}$) Using the simple switch model of the transistors with $\mathrm{R}_{\text {sqn }}=10 \mathrm{k} \Omega / \square$, $\mathrm{R}_{\text {sqq }}=20 \mathrm{k} \Omega / \square$, and $\mathrm{V}_{\mathrm{TN}}=\left|\mathrm{V}_{\mathrm{TP}}\right|=0.2 \mathrm{~V}$, draw the VTC of the circuit shown below and provide the values of $\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{IH}}$, and V_{IL}. You can assume that the NMOS and PMOS transistors inside of the inverters are sized such that their onresistances are equal.

VIe from In tu Out:

b) ($6 \mathbf{p t s}$) Using the velocity saturated model and assuming that both of the transistors below operate in saturation, what value of $\mathrm{V}_{\text {in }}$ makes the drain current of the two transistors equal to each other?.

$$
\begin{aligned}
& I_{D_{p}}=W_{p} v_{s u} t_{p} C_{0 x_{p}} \frac{\left(1.2 v-V_{1 \sim}-\left|v_{\text {To }}\right|\right)^{2}}{1.2 v-V_{1 \sim}-\left|v_{T p}\right|+\xi_{c p} \cdot L} \quad \xi_{c p} L=0.9 V \\
& I_{D N}=W_{N} v_{\text {out }} C_{u_{N}} \frac{\left(\mid V-V_{T N}\right)^{2}}{\mid V_{-V_{T N}}+\xi_{C N} L} \quad \xi_{N} L=0.45 V \\
& I_{D P}=I_{\text {or }} \longrightarrow I_{\Delta p} / I_{D N}=1 \\
& \frac{I_{D P}}{I_{D r}}=\frac{2 \mu m}{I_{\mu m}} \cdot \frac{\left(1 V-V_{1-}\right)^{2} /\left(I V-V_{i \sim+}+0.9 V\right)}{(0.8 V)^{2} /(0.8 V+0.45 V)}=1 \\
& \left(I V-V_{i N}\right)^{2}=0.256 V \cdot\left(1.9 V-V_{i N}\right) \\
& \rightarrow V_{\text {in }} \approx 375 \mathrm{mV}
\end{aligned}
$$

c) ($\mathbf{6}$ points) How much total energy is dissipated by the inverter shown below when In steps from 1.2 V to 0 V and then back to 1.2 V ? You can ignore all capacitors associated with the transistors inside of the inverter.

$I_{N}: 1.2 \mathrm{~V} \rightarrow \mathrm{OV}:$

$$
\begin{aligned}
& Q=(1.2 \mathrm{~V}-0.6 \mathrm{~V}) \cdot 50 \mathrm{ff}=30 \mathrm{fC} \\
& E_{1.2 \mathrm{~V}}=Q \cdot 1.2 \mathrm{~V}=36 \mathrm{fJ}
\end{aligned}
$$

In: $O \mathrm{~V} \rightarrow 1.2 \mathrm{~V}$:

$$
\begin{aligned}
& Q=(0.6 \mathrm{~V}-1.2 \mathrm{~V}) \cdot 50 \mathrm{ff}=-30 \mathrm{fC} \\
& E_{0.6 \mathrm{~V}}=Q \cdot 0.6 \mathrm{~V}=-18 \mathrm{fJ}
\end{aligned}
$$

(Charge flows in to 0.6 v supply so every is indeed returned to that supply.)

$$
\begin{aligned}
& E_{\text {inverter }}=E_{1.2 v}+E_{0.0 v} \\
& E_{\text {inverter }}=18 \mathrm{fJ}
\end{aligned}
$$

