

University of California
College of Engineering
Department of Electrical Engineering and Computer Sciences
E. Alon

Tuesday, December 15, 2009
5:00-8:00pm

EECS 141: FALL 2009—FINAL EXAM

For all problems, you can assume that all transistors have a channel length of 100 nm and the following parameters (unless otherwise mentioned):

NMOS:
$V_{T n}=0.2 \mathrm{~V}, \mu_{\mathrm{n}}=400 \mathrm{~cm}^{2} /(\mathrm{V} \cdot \mathrm{s}), \mathrm{C}_{\mathrm{ox}}=1.125 \mu \mathrm{~F} / \mathrm{cm}^{2}, v_{\mathrm{sat}}=1 \mathrm{e} 7 \mathrm{~cm} / \mathrm{s}, \mathrm{L}=100 \mathrm{~nm}, \gamma=\lambda=0$
PMOS:
$\left|V_{T p}\right|=0.2 \mathrm{~V}, \mu_{\mathrm{p}}=200 \mathrm{~cm}^{2} /(\mathrm{V} \cdot \mathrm{s}), \mathrm{C}_{\mathrm{ox}}=1.125 \mu \mathrm{~F} / \mathrm{cm}^{2}, \nu_{\mathrm{sat}}=1 \mathrm{e} 7 \mathrm{~cm} / \mathrm{s}, \mathrm{L}=100 \mathrm{~nm}, \gamma=\lambda=0$

| NAME | Last | Solutiuns |
| :--- | :--- | :--- | First \quad| |
| :--- |

GRAD/UNDERGRAD	

Problem 1: \qquad / 26

Problem 2: \qquad / 19

Problem 3: \qquad / 22

Problem 4: \qquad / 26

Total: \qquad / 93

PROBLEM 1: SRAM Design (26 pts)

For this problem we will be looking at a 256×32 SRAM (i.e., each wordline drives 32 cells, and each bitline has 256 cells on it), with each cell sized and implemented as shown below. You can assume that $\mathrm{C}_{\mathrm{G}}=\mathrm{C}_{\mathrm{D}}=2 \mathrm{fF} / \mu \mathrm{m}, \mathrm{R}_{\text {sqn }}=10 \mathrm{k} \Omega / \square, \mathrm{R}_{\text {sq }}=20 \mathrm{k} \Omega / \square$, that the transistors are quadratic (ie., long-channel), and that you can ignore all wire parasitics.

a) (6 pts) Assuming you use a static decoder with only NAND2's and inverters, and that the input capacitance on each address input must be less than 2 fF , what is the minimum delay of the decoder for this 256×32 memory? You should provide your answer in units of $\mathrm{t}_{\mathrm{FO} 4}=(4+\gamma) \mathrm{t}_{\text {inv }}$, and you can assume that the parasitic delay of all of the NAND gates is $\gamma \mathrm{t}_{\text {inv }}$ (ie., the same as an inverter), and you can ignore the fact that you can't build a fractional number of stages.

$$
\begin{aligned}
& C_{W L}=32 \cdot 2 \mathrm{fF} / \mu m \cdot 0.24 \mu m=15.36 \mathrm{fF} \\
& F=15.36 \mathrm{fF} / 2 \mathrm{fF}=7.68 \\
& \pi B=256 / 2=128 \\
& 8 \text { address lines, so need } 3 \text { stages of ANDiing: } \\
& \pi L E=\frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \approx 2.37 \\
& P E \approx 2330.2 \\
& N \text { stayes,opt }=\log _{4}(P E) \approx 5.59 \\
& E \text { och stage hus } E F=4 \text { and parasitic delay of Ytinv: } \\
& \text { todec } \approx 5.54 \text { tFo4 }
\end{aligned}
$$

b) ($\mathbf{4} \mathbf{p t s}$) For this same 256×32 SRAM, what is the delay (still in units of t_{FO}) from the wordline rising to the bitline crossing $\mathrm{Vdd} / 2$?

$$
\begin{aligned}
& R_{\text {cell }}=L R_{\text {sin }} \cdot\left(\frac{1}{0.12 \mu \mathrm{~mm}}+\frac{1}{0.24 \mathrm{~mm}}\right) \\
& C_{B L}=0.12 \mu m \cdot C_{D} \cdot 256 \\
& t_{p}=R_{\text {cell }} C_{B L}=L R_{\text {sql }} C_{D} \cdot 256 \cdot\left(1+\frac{1}{2}\right) \\
& t_{p}=\frac{3}{2} \cdot 256 \cdot L \cdot R_{s y N} \cdot C_{D} \quad T \\
& \begin{array}{l}
\text { tint }=3 L R_{\text {syn }} L_{G} \leftarrow \begin{array}{l}
\text { (includiry slope } \\
\text { effect) }
\end{array}
\end{array} \\
& t_{\text {FOu }}=(4+\gamma) t_{\text {iNV }}=15 L R_{\text {syN }} C_{G} \\
& \rightarrow t_{p, B L}=25.6 t_{F O 4}
\end{aligned}
$$

c) (8 pts) Now let's examine the effect of repartitioning the SRAM into a 128×64 array with 2-input MUXes selecting the appropriate final output, as shown below. Using your answers from parts a) and b), ignoring the capacitive loading of the MUX on the bitlines, and assuming that the delay of the MUX is $2 \mathrm{t}_{\mathrm{FO} 4}$, now what is the total delay of the SRAM from Addr to Out?

* For decoder, $F=2 \cdot F_{256 \times 32}$, but $\pi B=\frac{\pi B_{256 \times 32}}{2}$.

Since 7-input AND still reeds 3 levels of NANDI's, $\pi L E=\pi L E_{256 \times 32}$.

$$
\begin{aligned}
\text { Sou: }: & P E_{\text {dec, }, 128 \times 64}=P E_{\text {dee, } 256 \times 32} \\
& L t_{p, \text { dec, }, 128 \times 64}
\end{aligned}=t_{p, \text { dec, } 256 \times 32}=5.59 t_{\text {fou }}
$$

* Half us many cells on the bitline, so:

$$
\begin{aligned}
& t_{p, B L, 128 \times 64}=\frac{1}{2} t_{p, B 2,256 \times 32}=12.8 t_{\text {Fut }} \\
& \frac{1}{t} t_{p, t_{L} t}= t_{p, \text { dec }}+t_{p, B L}+t_{p, \text { mus }} \\
& t_{p, t u t}= 5.59 t_{\text {Fut }}+12.8 t_{\text {Fut }}+2 t_{f 04} \\
& t_{p, t u t}=20.39 t_{\text {fur }}
\end{aligned}
$$

d) (8 pts) Now assuming that the SRAM is partitioned into a $256 / \mathrm{N}_{\text {part }} \times 32 * \mathrm{~N}_{\text {part }}$ array, what value of $\mathrm{N}_{\text {part }}$ results in the minimum total delay for the SRAM? You should assume that the overall logical effort of the decoder is independent of $\mathrm{N}_{\text {part }}$, and that the delay of an N -input MUX is N_{FO}.

* Need equation for total delay as a function of Apart.
* Under these ussumptouns, decider delay is independent of spurt since each aldiess always needs to eventually drive half of the array (ie., $\pi B \cdot F$ is constant). $t_{p, d e c}=5.59$ trout

$$
\text { * } t_{p, B L}=t_{p, B L, 256 \times 32} / N_{\text {port }}=\frac{25.6 t_{\text {fou }}}{N_{\text {purr }}}
$$

* $t_{p, \text { max }}=N_{\text {puri }} t_{\text {fou }}$

$$
\text { So: } \quad t_{p, t u t}=t_{p, d e c}+\frac{t_{p, B L}, 2 \text { sb x32 }}{N_{\text {part }}}+N_{\text {purr }} t_{\text {put }}
$$

$$
\frac{\partial t_{p, 12 t}}{\partial N_{p a r t}}=-\frac{t_{p, 02,256 \times 32}}{N_{p a r t}^{2} t}+t_{\text {fut }}=0
$$

$$
\rightarrow N_{p u r} t_{, \text {opt }}=\sqrt{t_{p, B L, 256 \times 32} / t_{\text {Fut }}}
$$

$$
N_{\text {pust,ppt }} \approx 5.06
$$

PROBLEM 2: Miscellaneous (19 points)

a) (5 pts) Assuming $\mathrm{R}_{\text {sqq }}=2 * \mathrm{R}_{\text {sq }}$ and quadratic devices, size the gate shown below so that the worst-case pull-up and pull-down resistances are equal.

b) ($6 \mathbf{p t s}$) As a function of $\mathrm{Vdd}, \mathrm{C}_{\mathrm{vdd}}$, and $\mathrm{C}_{\text {ged }}$, how much energy is pulled out of the supply voltage Vdd when In transitions from low to high? How about when In transitions from high to low? Note that you can ignore all capacitors associated with the transistors except those explicitly drawn in the figure.

c) (8 pts) One of your colleagues (who didn't take EE141) shows you the circuit below and complains that "something is wrong with HSPICE" because their simulations show that the circuit functions correctly for $\mathrm{Vdd}=0.6 \mathrm{~V}$, but that the output isn't always correct when $\mathrm{Vdd}=1.2 \mathrm{~V}$. Assuming that $\mathrm{C}_{\mathrm{G}}=2 \mathrm{fF} / \mu \mathrm{m}$, $\mathrm{C}_{\mathrm{D}}=1.5 \mathrm{fF} / \mu \mathrm{m}$, and that $\mathrm{V}_{\mathrm{TN}}=\left|\mathrm{V}_{\mathrm{TP}}\right|=0.3 \mathrm{~V}$, explain why the circuit really doesn't work at $\mathrm{Vdd}=1.2 \mathrm{~V}$, and calculate the maximum supply voltage for which the circuit will function correctly. (Hint: Using the simple switch model, what are the VTCs of the dynamic gates shown below?)

* The problem is churge shuriry between cont (which may ger charged up tu VAB) and
Court (which is pre-dishemeded To greed).
* When charge share happens, if $V_{\text {cut }}>V_{T N}$, second gate fires ard gel wary output.
Q conservation:

$$
\begin{aligned}
& V_{\text {out }}=\frac{C_{\text {int }}}{C_{\text {int }}+\left(\overline{c_{\text {ant }}}\right.} \cdot V_{D D} \\
& C_{m}=6_{\text {mm }} \cdot C_{G}+4_{\mu m} \cdot C_{D}=18 \mathrm{fF} \\
& C_{\text {int }}=6 \mu m \cdot C_{D}+3 \mu m \cdot C_{v}=15 \mathrm{fF} \\
& \text { So: } \quad V_{D D} \cdot \frac{15 \mathrm{fF}}{15 \mathrm{fF}+18 \mathrm{fF}}<V_{T N} \\
& V_{D D}<0.66 \mathrm{~V} \quad \text { shariry) } \\
& \text { (Note thu whew } \\
& V_{00}<0.66 \mathrm{~V} \text {, you } \\
& \text { actually get } \\
& \text { incomplete charge } \\
& \text { shariry) }
\end{aligned}
$$

PROBLEM 3: Timing and Clock Distribution (22 points)

In this problem we will be examining the pipeline shown below. The minimum and maximum delays through the logic are annotated on the figure, and the flip-flops have the following properties: $\mathrm{t}_{\text {clk-q }}=50 \mathrm{ps}$, $\mathrm{t}_{\text {setup }}=50 \mathrm{ps}$, and $\mathrm{t}_{\text {hold }}=50 \mathrm{ps}$. You can assume that the clock has no jitter.

a) ($6 \mathbf{p t s}$) Assuming there is no skew between clk_{1} and clk_{2}, what is the minimum clock cycle time for this pipeline? Are there any minimum delay (hold time) violations?

$$
\begin{aligned}
& \text { * } T_{\text {Cyc,Mrin }}=t_{c l k_{-q}}+t_{p, M n n}+t_{p, m n \times 3}+t_{\text {setup }} \\
& T_{\text {cyc,min }}=50 p s+200 u_{p}+450 p s+50 p s \\
& T_{\text {aye, min }}=750 \mathrm{ps} \\
& \text { * tclk-q }+t_{p, \text { five } 2} \geq t_{\text {hold }} \\
& 50 p s+50 p s \geq 50 p s \quad V \\
& \longrightarrow N_{c} \text { minimum delay viclutions. }
\end{aligned}
$$

b) ($6 \mathbf{p t s}$) Now let's assume that clk_{1} and clk_{2} can be skewed relative to each other by up to $+/-60$ ps. Now what is the minimum clock cycle time? Are there any minimum delay violations?

* $T_{c y c, m i n}-t_{\text {skew }}=t_{c l k-q}+t_{p, m a s z}+t_{p, m 4 x 3}+t_{\text {setup }} \quad\left(c l k_{2}\right.$ eur, $\left.y_{y}\right)$ T cyc,mixd $-60 p s=50 p s+200 p s+45 u_{p s}+50 p s$

$$
T_{C y c, \text { Min }}=810 \mathrm{ps}
$$

$$
\begin{aligned}
& \text { * tckeq }+t_{p, \min 2}>\text { toul + skew (kr Inter) } \\
& 50 p s+5 u_{p s}>50 p s+60 p s \\
& \text { louis }>\mid 10 \mathrm{ps} \text { \& Nu! Have a hold time } \\
& \text { violation now. }
\end{aligned}
$$

c) (10 pts) Continuing to assume that there can be $+/-60 \mathrm{ps}$ of random skew between clk_{1} and clk_{2}, can you introduce any intentional skew and/or delay into the circuit in order to reduce the minimum cycle time without causing any hold time violations? If so, you should indicate where in the pipeline you want to add skew or delay, calculate what the new cycle time is, and prove that you will not have any hold time violations. If not, you should explain why this it isn't possible to improve the cycle time without introducing a hold time violation.

* What we reed tu du is fix the hull time violation withal slowiry dower the croton puth.
* As sher above, simplest way to do this is to add a delay td between Cl_{2} and the following flop.
* How mush td is needed? Wart to steal enough time that max. paths through CL_{1} ard $\mathrm{Cl}_{2} / \mathrm{Cl}_{3}$ have zero margin. To do this, look at difference between tpimaxe and to, maxi:

$$
\Delta t=\left(t_{p, m a \times 2}+t_{p_{m a x 3}}-t_{p, m u x 1}\right)=150 p_{p}
$$

* Splitting the difference equally means we want $c k_{2}$ tu arrive $t_{s k}=\Delta t / 2=75 \mathrm{ps}$ after $c k_{1}$.
* To meet hold time: talk-q+tmowz tod \geq thald +tsk+tskew

$$
\rightarrow t_{u_{\text {min }}}=85 p_{s}
$$

*Now: $T_{c y c, m \times N}=t_{c l k-q}+t_{p, \max 2}+t_{p, m n>3}+t_{\text {setup }}+t_{\text {skew }}-t_{s k}$

$$
T_{c y c, m i n}=735 \mathrm{ps}
$$

PROBLEM 4: Arithmetic (26 pts)

In this problem we will look at designing a circuit that adds together 7 1-bit binary numbers $\mathrm{A}_{6: 0}$ into one 3-bit output $\mathrm{S}_{2: 0}$ (whose value ranges from 0 to 7).
a) (4 pts) Shown below is a simple implementation of this circuit that uses only half adders (HA), full adders (FA), and XOR gates. Assuming that the sum and carry delays of the half and full adders are equal to each other and to the delay of the KORs, how many gate delays are there on the critical path for this circuit? (Please mark this path on the schematic.)

* Critical path: 7 gate delays
b) (4 pts) If each FA requires $10 \mu \mathrm{~m}^{2}$ of area, each HA requires $6 \mu \mathrm{~m}^{2}$, and each XOR requires $4 \mu \mathrm{~m}^{2}$, how much total area is occupied by the circuit from part a)?

$$
\text { * Area: } \begin{aligned}
& I F A+8 H A+3 \times O R \\
\longrightarrow & \\
\text { Area } & =10 \mu^{2}+8.6 \mu m^{2}+3.4 \mu n^{2} \\
\text { Arena } & =70 \mu m^{2}
\end{aligned}
$$

c) ($\mathbf{8} \mathbf{~ p t s}$) Ace says she has a better implementation for this circuit and shows you the schematic below. Under the same assumptions as part a) and b), how many gate delays are on the critical path of this circuit, and how much area does it consume? Once again, please highlight the critical path on the schematic.

Area: $\quad 3 F A+3 H A+1 x O R$

$$
\begin{aligned}
& \text { Area }=3 \cdot 10 \mu \mathrm{~m}^{2}+3 \cdot 6 \mu \mathrm{~m}^{2}+4 \mu \mathrm{~m}^{2} \\
& \text { Area }=52 \mu \mathrm{~m}^{2}
\end{aligned}
$$

d) (10 pts) Still using only full adders, half adders, and KORs, and without increasing the delay, draw an implementation for this circuit that uses even less area than the one from part c). How much area does this implementation require?
Solution \#1:
\#Rather than consume all of the iepat bits right away I FA and 2HA's, we cum do a little bit better by just usury $2 F A s$ is the first stage. We cur thew replace ar $F A$ with ar HA ir the second stage.

$$
\left(\begin{array}{l}
0 \\
0 \\
\vdots \\
\vdots \\
\vdots
\end{array}\right) \rightarrow\binom{0}{0} \rightarrow 0^{0}\left(0^{\circ} \rightarrow{ }^{0 \cdot} \rightarrow{ }^{\cdots}\right.
$$

* Critical path still 4 gates
* Area: $3 F A+2 H A+1$ XOR

$$
\begin{gathered}
A_{\text {en }}=3 \cdot 10 \mu m^{2}+2 \cdot 6 \mu m^{2}+4 \mu m^{2} \\
A_{\text {req }}=46 \mu \mathrm{~m}^{2}
\end{gathered}
$$

Solution \#2:
Can actually do ever better thar this by once again replacing some $H A$'s with $F A$:

Critical path row 3 gate delays

Area: 4FA

$$
\Delta_{\text {len }}=40 \mu \mathrm{~m}^{2}
$$

