

University of California
College of Engineering
Department of Electrical Engineering and Computer Sciences
E. Alon

Thursday, November 6, 2008
6:30-8:00pm

EECS 141: FALL 2008—MIDTERM 2

For all problems, you can assume that all transistors have a channel length of 100 nm and the following parameters (unless otherwise mentioned):

NMOS:
$V_{T n}=0.2 \mathrm{~V}, \mu_{\mathrm{n}}=400 \mathrm{~cm}^{2} /(\mathrm{V} \cdot \mathrm{s}), \mathrm{C}_{\mathrm{ox}}=1.125 \mu \mathrm{~F} / \mathrm{cm}^{2}, v_{\mathrm{sat}}=1 \mathrm{e} 7 \mathrm{~cm} / \mathrm{s}, \lambda=0$
PMOS:
$\left|V_{T p}\right|=0.2 \mathrm{~V}, \mu_{\mathrm{p}}=200 \mathrm{~cm}^{2} /(\mathrm{V} \cdot \mathrm{s}), \mathrm{C}_{\mathrm{ox}}=1.125 \mu \mathrm{~F} / \mathrm{cm}^{2}, v_{\mathrm{sat}}=1 \mathrm{e} 7 \mathrm{~cm} / \mathrm{s}, \lambda=0$

| NAME | Last \quad Solutions \quad First |
| :--- | :--- | :--- |

GRAD/UNDERGRAD	

Problem 1: \qquad / 18

Problem 2: \qquad / 30

Problem 3: \qquad / 20

Total: \qquad / 68

PROBLEM 1. (18 pts) GRAMs and Wires
In this problem, we will be looking at a 256×256 SRAM, where each 6 T cell is $2 \mu \mathrm{~m}$ wide and $1.5 \mu \mathrm{~m}$ tall. All of the devices in the SRAM cell are minimum length ($\mathrm{L}=$ $0.1 \mu \mathrm{~m}$), and you can assume that both the NMOS access transistors and the NMOS pulldown transistors are $0.25 \mu \mathrm{~m}$ wide, and that the PMOS transistors are $0.12 \mu \mathrm{~m}$ wide. The bitline wires are $0.2 \mu \mathrm{~m}$ wide. You can also assume that $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{C}_{\mathrm{G}}=\mathrm{C}_{\mathrm{D}}=1 \mathrm{fF} / \mu \mathrm{m}$, and that the wires have the following characteristics: $\mathrm{C}_{\mathrm{pp}}=100 \mathrm{aF} / \mu \mathrm{m}^{2}, \mathrm{C}_{\mathrm{fr}}=$ $50 \mathrm{aF} / \mu \mathrm{m} / \mathrm{edge}$, and $\mathrm{R}_{\mathrm{sq}, \mathrm{w}}=0.1 \Omega / \square$.
a) (6 pts) What is the total capacitance loading each bitline in this memory?

$$
\begin{aligned}
& \text { Drain cup/cell: } \quad W C_{D}=0.25 \mu m \cdot 1 \mathrm{fF} / \mu m=0.25 \mathrm{fF} \\
& \text { Wire cup lyell: } \quad W L C_{p p}+2 L(f f= 0.2 \mu \mathrm{~m} \cdot 1.5 \mu \mathrm{~m} \cdot 0.1 \mathrm{fF} / \mu \mathrm{m}^{2} \\
&+2 \cdot 1.5 \mu \mathrm{~m} \cdot 0.05 \mathrm{fF} / \mu \mathrm{m} \\
&= 0.18 \mathrm{fF}
\end{aligned}
$$

Total cup: $256 \cdot\left(C_{\text {drain }}+\left(C_{\text {wire }}\right)=256 \cdot(0.25 \mathrm{ff}+0.18 \mathrm{ff})\right.$

$$
=110.08 \mathrm{fF}
$$

b) ($7 \mathbf{p t s}$) If we were reading to or writing from the SRAM array, what is the worstcase RC delay due to the bitline wire? You can assume that the input is a ramp (i.e., $\mathrm{t}_{\mathrm{p}}=\tau_{\text {Elmore }}$).

Already calculated wire cup itsolf-just need to notice that drain jurituor cup from transistors will slow the wire down too. So:

$$
\begin{aligned}
& \text { wire down too. So: } \\
& R_{\text {wire }}=R_{\text {sq,w }} \cdot \frac{L}{W_{\text {wirer }}}=0.1 \Omega / \square \cdot \frac{256 \cdot 1.5 \mu \mathrm{~m}}{0.2 \mu \mathrm{~m}}=192 \Omega
\end{aligned}
$$

$$
t_{p, \text { wire }}=\frac{R_{w . r e} \cdot C_{w i r e}}{2} \approx 10.57 \text { ps }
$$

π model:

c) (5 pts) If the V_{DD} of the SRAM was raised to 1.3 V , would the RC delay of the bitline wire increase, decrease, or stay the same? You don't need to do any calculations, but you do need to explain your answer.

The RC delay would actually decrease because the effective cupacitame from the drain jundious would decrease. Remember, C_{0} is a livearization of the actual non-linear junction exp; if $V_{D D}$ is increased, the drain junctions become mus reverse biased.

PROBLEM 2. (30 pts) Activity Factors and Sensitivity Analysis.
This problem will deal with the circuit shown below; throughout this problem you can assume that $\mathrm{C}_{\mathrm{D}}=0$.

a) ($6 \mathbf{p t s}$) Assuming that all of the inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D have equal probability of being a 1 or a 0 , what are the activity factors (i.e., $\alpha_{0_{\rightarrow}}$) at each of the nodes of the circuit (ie., n0-n3)?

$$
\begin{aligned}
n 0: & P(\cap)=0)=P(A=1) \cdot P(B=1)=\frac{1}{4} \\
& \alpha_{0 \rightarrow 1}(\cap 0)=\frac{1}{4} \cdot\left(1-\frac{1}{4}\right)=\frac{3}{16}
\end{aligned}
$$

nl: inverter doeswt modify activity

$$
\rightarrow \alpha_{0 \rightarrow 1}(n \mid)=\frac{3}{16} \quad \text { Note: } P(n \mid)=P(n 0=0)=\frac{1}{4}
$$

n2: $P(n 2=0)=P(n \mid=1) \cdot P(C=1)=\frac{1}{4} \cdot \frac{1}{2}=\frac{1}{8}$

$$
\alpha_{0 \rightarrow 1}(n 2)=\frac{1}{8} \cdot\left(1-\frac{1}{8}\right)=\frac{7}{64}
$$

n3: Same as $n 2$

Node	$\alpha_{0 \rightarrow 1}$
no	$3 / 16$
n1	$3 / 16$
n2	$7 / 64$
n3	$7 / 64$

b) ($6 \mathbf{p t s}$) Assuming the circuit operates with a supply voltage $V_{D D}$ and a clock frequency f, what is the total dynamic power consumed by this circuit as a function of $\mathrm{C}_{\text {in }}, \mathrm{C}_{1}, \mathrm{C}_{2}$, and $\mathrm{C}_{\text {load }}$ (as labeled above)? Note that you should include the power dissipated by driving the $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D inputs. If you aren't sure about your answers for part a), please assume that all of the activity factors are $1 / 8$ (which is not the correct answer to part a).

$$
\begin{aligned}
& P_{A}: \alpha_{0 \rightarrow 1}(A) \cdot C_{i n} V_{d d}^{2} f=\frac{1}{4} C_{1 n} V_{d d}^{2} f \\
& P_{B}: S_{\text {um }} \text { as } A \rightarrow \frac{1}{4} C_{1 . N}^{2} V_{d d} f \\
& P_{n 0}: \alpha_{0 \rightarrow 1}(n 0) \cdot C_{1} V_{d d}^{2} f=\frac{3}{16} C_{1} V_{d d}^{2} f \\
& P_{n 1}: \alpha_{0 \rightarrow 1}(n 1) \cdot 2 \cdot C_{2} \cdot V_{d d}^{2} f=\frac{3}{8} C_{2} V_{d d}^{2} f \\
& P_{C}: \alpha_{0 \rightarrow 1}(C) \cdot C_{2} \cdot V_{d d}^{2} f=\frac{1}{4} C_{2} V_{d d}^{2} f
\end{aligned}
$$

P_{0} : Same as $C \rightarrow \frac{1}{4} C_{2} V_{d d}^{2} f$
$P_{n 2}: \alpha_{0 \rightarrow 1}(n 2) \cdot C_{\text {load }} \cdot V_{d d}^{2} f f=\frac{7}{64} C_{\text {load }} V_{d l e}{ }^{2} f$
$P_{n 3}$: Sure as $n 2 \rightarrow \frac{7}{64} C_{\text {load }} V^{2} d d f$

$$
P_{\text {total }}=\left[\frac{1}{2} c_{i v}+\frac{3}{16} c_{1}+\frac{7}{8} c_{2}+\frac{7}{32} c_{1 \text { oud }}\right] v_{d d}^{2} f
$$

c) (4 pts) Assuming that A is the critical input (i.e., the last one to transition) and that the transistors are quadratic long-channel, what is the delay of the decoder (in units of $\mathrm{t}_{\text {inv }}$) as a function of $\mathrm{C}_{\mathrm{in}}, \mathrm{C}_{1}, \mathrm{C}_{2}$, and $\mathrm{C}_{\text {load }}$?

$$
\begin{aligned}
& {\text { Lowry -channel devices } \rightarrow L_{\text {NAND2 }}=\frac{4}{3}}^{t_{p}=\operatorname{tinv}\left[\frac{4}{3} \frac{C_{1}}{c_{1 n}}+\frac{2 C_{2}}{C_{1}}+\frac{4}{3} \frac{c_{\text {load }}}{C_{2}}+2 \gamma+\gamma+2 \gamma\right]} \\
& \gamma=0 \text { since } C_{D}=0 \text {, so: } \\
& t_{p}=\operatorname{tinv}\left[\frac{4}{3} \frac{c_{1}}{C_{\text {in }}}+\frac{2 C_{2}}{C_{1}}+\frac{4}{3} \frac{c_{10 a d}}{c_{2}}\right]
\end{aligned}
$$

d) (8 pts) With the specific sizes shown above, what are the sensitivities $\mathrm{S}_{\mathrm{C} 1}$ and $\mathrm{S}_{\mathrm{C} 2}$, where $\mathrm{S}_{\mathrm{x}}=(\partial$ Power $/ \partial \mathrm{x}) /(\partial$ Delay $/ \partial \mathrm{x})$?

$$
\begin{aligned}
& P_{\text {tot }}=\left[\frac{1}{2} C_{\text {in }}+\frac{3}{16} C_{1}+\frac{7}{8} C_{2}+\frac{7}{32} C_{\text {lond }}\right] V_{d a l}^{2} f \\
& t_{p}=\left[\frac{4}{3} \frac{C_{1}}{C_{\text {in }}}+\frac{2 C_{2}}{C_{1}}+\frac{4}{3} \frac{C_{\text {lond }}}{C_{2}}\right] \text { inv } \\
& \text { Cf: } J P / x_{1}=3 / 16 V_{d a}^{2} f \\
& \frac{\partial p_{1}}{\partial a_{1}}=\left[\frac{4}{3} \frac{1}{3}-\frac{v_{2}\left(c_{2}\right)}{c_{1}}\right]+\ldots w
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cf: } O P / \partial C_{2}=\frac{7}{8} V^{2} d u \\
& \frac{\partial t_{p}}{\partial c_{2}}=\left[\frac{2}{c_{1}}-\frac{4}{3} \frac{c_{1 \text { ono }}}{c_{2}^{2}}\right] \operatorname{tin} v
\end{aligned}
$$

e) ($6 \mathbf{p t s}$) If you could change only one of the gate sizes (ie., either C_{1} or C_{2}), which one would you change, and in what direction? Be sure to explain your answer.

Notice that sensitivity of C_{2} is at only lugger in magnitude, its sign is positive. This means that if we decrease C_{2}, we get both luwer purer and lower delay. So, we should definitely decrease C_{2}.

PROBLEM 3. Scaling and Leakage (20 points)
For this problem you can ignore shoot-through current and assume that $\mathrm{C}_{\mathrm{G}}=\mathrm{C}_{\mathrm{D}}=$ $2 \mathrm{fF} / \mu \mathrm{m}$, and that the leakage current of the transistors is equal to $\frac{W}{L} I_{0} e^{\left(\frac{-V_{T}}{1.5 \times 25 m V}\right)}$, where $\mathrm{I}_{0, \mathrm{NMOS}}=4 \mu \mathrm{~A}$ and $\mathrm{I}_{0, \text { MOS }}=2 \mu \mathrm{~A}$ are both independent of technology scaling.
a) ($6 \mathbf{p t s}$) What is the power dissipation of an inverter implemented in a 100 nm technology with $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{~W}_{\mathrm{n}}=10 \mu \mathrm{~m}$, and $\mathrm{W}_{\mathrm{p}}=20 \mu \mathrm{~m}$ driving a capacitive load of 120 fF ? On average, the input to this inverter changes its state once every 25 cycles of a 2 GHz clock.

Leakage for woos \& Pros equal:

$$
\begin{aligned}
& P_{\text {leak }}=\frac{10 \mu \mathrm{~mm}}{0 . \mu_{\mu \mathrm{m}}} \cdot 4_{\mu} \mathrm{A} \cdot e^{(-200 \mathrm{NV} / 1.5 .25 \mathrm{NV})} \cdot 1.2 \mathrm{~V} \\
& P_{\text {leak }}=2.317 \mu \mathrm{~W}
\end{aligned}
$$

(Activity fuidur: 1 transition every
25 cycles \rightarrow half of then are $0 \rightarrow 1$.

$$
\begin{aligned}
& \text { Sou } \alpha_{u \rightarrow 1}=1 / 50 \\
& P_{\text {dyw }}=\frac{1}{50}\left[30 \mu \mathrm{~m} \cdot\left(C_{G}+C_{0}\right)+120 \mathrm{ff}\right](1.2 \mathrm{~V})^{2} \cdot 2 \mathrm{GHz} \\
& \\
& =13.824 \mu \mathrm{~W} \\
& P_{\text {total }} \approx 16.14 \mu \mathrm{~W}
\end{aligned}
$$

b) ($6 \mathbf{~ p t s}$) If the same inverter is now scaled to a 50 nm technology with full scaling (ie., V_{DD} and V_{T} scaled along with the dimensions), what is the power consumption of the inverter in the new technology? You can assume that the capacitive load scales with the technology, but that the clock frequency is fixed.

$$
\begin{aligned}
& S=\frac{100 \mathrm{~m}}{50 \mathrm{~m}}=2 \quad W_{N}=\frac{1}{2} w_{p}=\frac{10 \mu \mathrm{~m}}{S}=5 \mu \mathrm{~m} \quad C_{\text {lead }}=600 \mathrm{~F} \\
& v_{00}=\frac{1.2 V}{S}=0.6 \mathrm{~V} \quad V_{T}=\frac{2000 \mathrm{~V}}{\mathrm{~S}}=100 \mathrm{mV}
\end{aligned}
$$

$$
\begin{aligned}
& P_{\text {leak }}=\frac{5 \mu m}{0.05 \mu m} \cdot 4 \mu A \cdot e^{\left(-100_{m} \mathrm{~V} / 1.5 \cdot 2 \sigma_{r} \mathrm{~V}\right)} \cdot 0.6 \mathrm{~V}=16.68 \mu \mathrm{~W} \\
& P_{\text {tow }} \approx 18.4 \mu \mathrm{~m}
\end{aligned}
$$

c) (8 pts) Still keeping the clock frequency fixed in the 50 nm technology, what is the power consumption of the inverter under fixed voltage scaling? Why is this power actually lower than the power of the inverter with full scaling?

$$
\begin{aligned}
& V_{D O}=1.2 \mathrm{~V} \\
& V_{T}=200 \mathrm{MV} \\
& P_{\text {duN }}=\frac{1}{50} \cdot 120 \mathrm{ff} \cdot(1.2 \mathrm{~V})^{2} \cdot 2 \mathrm{GHz}=6.912 \mu \mathrm{~W} \\
& P_{\text {leak }}=\frac{5 \mu \mathrm{~m}}{.05 \mu \mathrm{~m}} \cdot 4 \mu \mathrm{~A} \cdot e^{(-200 \mathrm{mV} / 1.5 \cdot 25 \mathrm{MV})} \cdot 1.2 \mathrm{~V}=2.317 \mu \mathrm{~W} \\
& P_{\text {total }}=9.23 \mu \mathrm{~W}
\end{aligned}
$$

Power with fixed voltage sculiry actually lower because leakage increased $\sim 8 x$ with full scaling. By bringing V_{T} buck to $20 u_{m V}$ (dropping leakage current by $\sim 14_{x}$), overall power is lower (ever thong $V_{D D}$ doubled).

