

University of California College of Engineering Department of Electrical Engineering and Computer Sciences

E. Alon

Tuesday, October 7, 2008 6:30-8:00pm

EECS 141: FALL 2008—MIDTERM 1

For all problems, you can assume that all transistors have a channel length of 100nm and the following parameters (unless otherwise mentioned):

		_	_		
	· Λ		~ `	41	
- 1	IIN.	/		•	•
1.4	T.		ι,	17	•

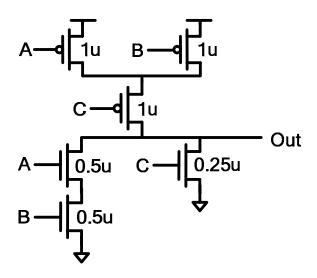
$$V_{Tn} = 0.2 \text{V}, \ \mu_n = 400 \text{ cm}^2/(\text{V}\cdot\text{s}), \ C_{\text{ox}} = 1.125 \ \mu\text{F/cm}^2, \ v_{\text{sat}} = 1e7 \ \text{cm/s}, \ \lambda = 0$$

$$|V_{Tp}| = 0.2$$
V, $\mu_p = 200$ cm²/(V·s), $C_{ox} = 1.125 \mu F/cm^2$, $v_{sat} = 1e7$ cm/s, $\lambda = 0$

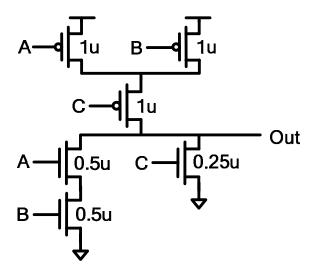
NAME	Last	First	
GRAD/UNI	DERGRAD		

Problem 1: ____/ 18

Problem 2: ____/20


Problem 3: ____/ 26

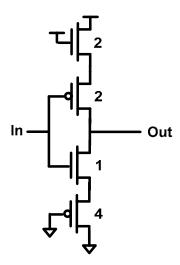
Total: / **64**


PROBLEM 1. (18 pts) Complex Gates and Elmore Delay.

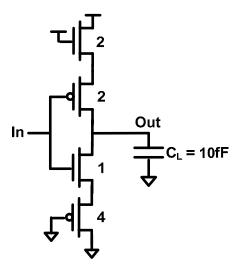
a) (6 pts) Implement the function $F = \overline{(A \cdot B + C) \cdot (D + E)}$ with a complex static CMOS gate. Assuming $R_{sqp} = 3R_{sqn}$, you should size your gate so that the worst-case pull up resistance is equal to the worst-case pull-down resistance.

b) (6 pts) Using the switch model for the transistors, draw the RC network you would use to calculate the delay of the gate shown below when $B=V_{DD},\,C=0V,$ and A transitions from 0V to $V_{DD}.$ You can assume that $C_G=C_D=2fF/\mu m,\,R_{sqn}=10k\Omega/\Box$, and $R_{sqp}=30k\Omega/\Box$.

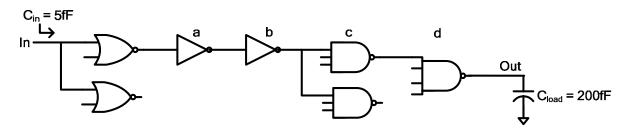
c) (6 pts) Using the same model and component values you drew in part b), what is the delay of the gate under the same situation (i.e., when $B = V_{DD}$, C = 0V, and A transitions from 0V to V_{DD})? You should provide your answer for the delay in both absolute ps and in units of t_{inv} . For your convenience the gate has been repeated below.



PROBLEM 2. (20 pts) IV Characteristics, VTCs, and Energy


a) (2 pts) For a long-channel (quadratic) NMOS transistor with $V_{GS} = V_{DS} = 1.2V$, how does the drain current change if the mobility of the device μ_n is doubled? How about if C_{ox} is doubled?

b) (6 pts) Now let's look at a short-channel (velocity-saturated) NMOS transistor with $V_{GS} = V_{DS} = 1.2V$. Using the velocity saturated model for this transistor, how much drain current would you get from a 1µm wide transistor if you doubled μ_n to 800 cm²/(V·s)? How about if you doubled C_{ox} to 2.25 µF/cm²?

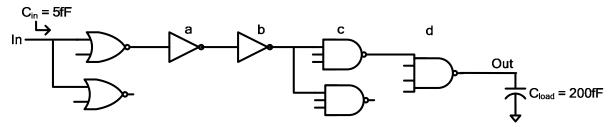

c) (6 pts) For parts c) and d), you should use the simple switch model of the transistors with $R_{sqn}=10k\Omega/\Box$, $R_{sqp}=20k\Omega/\Box$, $V_{DD}=1.2V$, and $V_{TN}=|V_{TP}|=0.2V$. Draw the VTC of the circuit shown below and provide the values of V_{OH} , V_{OL} , V_{IH} , and V_{IL} .

d) (6 points) For this same circuit (repeated below), how much energy is supplied by V_{DD} to charge C_L when In steps from V_{DD} to 0V?

PROBLEM 3. Logical Effort and Gate Sizing (26 points)

a) (6 pts) What is the path effort from In to Out?

b) (2 pts) What EF/stage minimizes the delay of this chain of gates?


c) (8 pts) Size the gates to minimize the delay from In to Out.

Size	Value (fF)
a	
b	
c	
d	

d)	(4 pts) By changing only the order (but not the types) of the gates, can you reduce the total capacitance of the gates in this chain? If so, draw the re-ordered chain (you do not need to recalculate the sizes) and explain why the capacitance is reduced; if not, explain why this isn't possible.				

e) (6 points) While maintaining the same logical functionality and without changing C_{in}, can you improve the delay of this chain of gates (repeated below) by changing the number and/or types of gates? Please draw an improved schematic for the new chain of gates; you don't need to provide gate sizes.

Original chain:

Improved chain: