

University of California
College of Engineering
Department of Electrical Engineering and Computer Sciences
E. Alon

Tuesday, October 7, 2008
6:30-8:00pm

EECS 141: FALL 2008—MIDTERM 1

For all problems, you can assume that all transistors have a channel length of 100 nm and the following parameters (unless otherwise mentioned):

NMOS:
$V_{T n}=0.2 \mathrm{~V}, \mu_{\mathrm{n}}=400 \mathrm{~cm}^{2} /(\mathrm{V} \cdot \mathrm{s}), \mathrm{C}_{\mathrm{ox}}=1.125 \mu \mathrm{~F} / \mathrm{cm}^{2}, v_{\mathrm{sat}}=1 \mathrm{e} 7 \mathrm{~cm} / \mathrm{s}, \lambda=0$
PMOS:
$\left|V_{T p}\right|=0.2 \mathrm{~V}, \mu_{\mathrm{p}}=200 \mathrm{~cm}^{2} /(\mathrm{V} \cdot \mathrm{s}), \mathrm{C}_{\mathrm{ox}}=1.125 \mu \mathrm{~F} / \mathrm{cm}^{2}, v_{\mathrm{sat}}=1 \mathrm{e} 7 \mathrm{~cm} / \mathrm{s}, \lambda=0$

NAME	Last	First

GRAD/UNDERGRAD	

Problem 1: \qquad / 18

Problem 2: \qquad / 20

Problem 3: \qquad / 26

Total: / 64

PROBLEM 1. (18 pts) Complex Gates and Elmore Delay.

a) (6 pts) Implement the function $F=\overline{(A \cdot B+C) \cdot(D+E)}$ with a complex static CMOS gate. Assuming $\mathrm{R}_{\text {sqp }}=3 \mathrm{R}_{\mathrm{sqn}}$, you should size your gate so that the worstcase pull up resistance is equal to the worst-case pull-down resistance.
b) ($6 \mathbf{p t s}$) Using the switch model for the transistors, draw the RC network you would use to calculate the delay of the gate shown below when $\mathrm{B}=\mathrm{V}_{\mathrm{DD}}, \mathrm{C}=0 \mathrm{~V}$, and A transitions from 0 V to V_{DD}. You can assume that $\mathrm{C}_{\mathrm{G}}=\mathrm{C}_{\mathrm{D}}=2 \mathrm{fF} / \mu \mathrm{m}, \mathrm{R}_{\text {sqn }}$ $=10 \mathrm{k} \Omega / \square$, and $\mathrm{R}_{\text {sqp }}=30 \mathrm{k} \Omega / \square$.

c) (6 pts) Using the same model and component values you drew in part b), what is the delay of the gate under the same situation (i.e., when $\mathrm{B}=\mathrm{V}_{\mathrm{DD}}, \mathrm{C}=0 \mathrm{~V}$, and A transitions from 0 V to V_{DD})? You should provide your answer for the delay in both absolute ps and in units of $\mathrm{t}_{\mathrm{inv}}$. For your convenience the gate has been repeated below.

PROBLEM 2. (20 pts) IV Characteristics, VTCs, and Energy
a) (2 pts) For a long-channel (quadratic) NMOS transistor with $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}=1.2 \mathrm{~V}$, how does the drain current change if the mobility of the device μ_{n} is doubled? How about if C_{ox} is doubled?
b) ($6 \mathbf{p t s}$) Now let's look at a short-channel (velocity-saturated) NMOS transistor with $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}=1.2 \mathrm{~V}$. Using the velocity saturated model for this transistor, how much drain current would you get from a $1 \mu \mathrm{~m}$ wide transistor if you doubled μ_{n} to $800 \mathrm{~cm}^{2} /(\mathrm{V} \cdot \mathrm{s})$? How about if you doubled C_{ox} to $2.25 \mu \mathrm{~F} / \mathrm{cm}^{2}$?
c) ($6 \mathbf{p t s})$ For parts c) and d), you should use the simple switch model of the transistors with $\mathrm{R}_{\mathrm{sqn}}=10 \mathrm{k} \Omega / \square, \mathrm{R}_{\mathrm{sqp}}=20 \mathrm{k} \Omega / \square, \mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{TN}}=\left|\mathrm{V}_{\mathrm{TP}}\right|=$ 0.2 V . Draw the VTC of the circuit shown below and provide the values of V_{OH}, $\mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{IH}}$, and V_{IL}.

d) (6 points) For this same circuit (repeated below), how much energy is supplied by V_{DD} to charge C_{L} when In steps from V_{DD} to 0 V ?

PROBLEM 3. Logical Effort and Gate Sizing (26 points)

a) (6 pts) What is the path effort from In to Out?
b) (2 pts) What $\mathrm{EF} /$ stage minimizes the delay of this chain of gates?
c) (8 pts) Size the gates to minimize the delay from In to Out.

Size	Value (fF)
a	
b	
c	
d	

d) (4 pts) By changing only the order (but not the types) of the gates, can you reduce the total capacitance of the gates in this chain? If so, draw the re-ordered chain (you do not need to recalculate the sizes) and explain why the capacitance is reduced; if not, explain why this isn't possible.
e) (6 points) While maintaining the same logical functionality and without changing C_{in}, can you improve the delay of this chain of gates (repeated below) by changing the number and/or types of gates? Please draw an improved schematic for the new chain of gates; you don't need to provide gate sizes.

Original chain:

Improved chain:

