

University of California
College of Engineering
Department of Electrical Engineering and Computer Sciences
E. Alon

Saturday, December 13, 2008
12:30-3:30pm

EECS 141: FALL 2008—FINAL EXAM

For all problems, you can assume that all transistors have a channel length of 100 nm and the following parameters (unless otherwise mentioned):

NMOS:
$V_{T n}=0.2 \mathrm{~V}, \mu_{\mathrm{n}}=400 \mathrm{~cm}^{2} /(\mathrm{V} \cdot \mathrm{s}), \mathrm{C}_{\mathrm{ox}}=1.125 \mu \mathrm{~F} / \mathrm{cm}^{2}, v_{\mathrm{sat}}=1 \mathrm{e} 7 \mathrm{~cm} / \mathrm{s}, \mathrm{L}=100 \mathrm{~nm}, \gamma=\lambda=0$
PMOS:
$\left|V_{T p}\right|=0.2 \mathrm{~V}, \mu_{\mathrm{p}}=200 \mathrm{~cm}^{2} /(\mathrm{V} \cdot \mathrm{s}), \mathrm{C}_{\mathrm{ox}}=1.125 \mu \mathrm{~F} / \mathrm{cm}^{2}, \nu_{\mathrm{sat}}=1 \mathrm{e} 7 \mathrm{~cm} / \mathrm{s}, \mathrm{L}=100 \mathrm{~nm}, \gamma=\lambda=0$

NAME	Last Solutions	First

GRAD/UNDERGRAD	

Problem 1: \qquad / 16

Problem 2: \qquad / 14

Problem 3: \qquad / 24

Problem 4: \qquad / 24

Problem 5: \qquad / 18

Total: \qquad / 96

PROBLEM 1: Logic Styles and LE (16 pts)
For this problem, you can assume that $\mathrm{C}_{\mathrm{G}}=\mathrm{C}_{\mathrm{D}}=2 \mathrm{fF} / \mu \mathrm{m}, \mathrm{R}_{\mathrm{sqn}}=10 \mathrm{k} \Omega / \square, \mathrm{R}_{\mathrm{sqp}}=$ $20 \mathrm{k} \Omega / \square$, and that the transistors are quadratic (ie., long-channel).
a) (3 pts) What logical function does the gate shown below implement?

b) ($7 \mathbf{p t s}$) Given the sizing shown below, what value of W would you use in order to make the worst-case LE of the C input equal to half the LE of the A and B inputs (ie., $\mathrm{LE}_{\mathrm{C}}=1 / 2 \mathrm{LE}_{\mathrm{A}}$)? What would be the LE of the C input in this case?

Note that the wurst-case resistume of the stage is the same regardless of whether we are looking at the C, B, or A inputs. So, $C_{\text {in }}$ for C must
be $1 / 2$ the $C_{i n}$ fir A a, B :

$$
\begin{gathered}
C_{1 \sim c}=\frac{1}{2} C_{1 \sim A} \\
(W+1)=2 \rightarrow W=1 \\
L_{C}=\frac{\left(\frac{1}{2}-1+\frac{1}{2}+1\right) R_{s q} L \cdot 2 C_{g}}{R_{s q} L \cdot 3 C_{y}} \\
L E_{c}=\frac{4}{3}
\end{gathered}
$$

c) (6 pts) During evaluation, what is the logical effort of the dynamic gate shown below from input In?

$$
\begin{aligned}
& R_{\text {pallup }}=\frac{R_{\text {sq,p }}}{R_{\text {sq,N }}} \cdot\left(1+\frac{1}{4}\right)=2 \cdot 5 \\
& R_{\text {keeper }}=\frac{1}{0.2}=5 \\
& I_{\text {pullup }} \propto \frac{1}{2.5}-\frac{1}{5}=\frac{1}{5} \rightarrow R_{\text {gate }}=5 \\
& C_{\text {gate }}=1 \\
& L_{E}=\frac{R_{\text {gate }} \text { Cate }}{R_{\text {inv }} \text { Cinv }}=\frac{5}{3}
\end{aligned}
$$

PROBLEM 2: SRAM Design (14 points)
For this problem you should use the velocity saturated transistor model.
a) ($\mathbf{8} \mathbf{~ p t s) ~ S h o w n ~ b e l o w ~ i s ~ a n ~ S R A M ~ c e l l ~ d u r i n g ~ a ~ r e a d , ~ w h e r e ~ t h e ~ p o w e r ~ s u p p l y ~ o f ~}$ the SRAM has been reduced to 0.65 V while the V_{DD} of the wordline is 1.2 V . Note that the bitlines have also been precharged to 0.65 V . With the device sizing shown below, what is the read $\Delta \mathrm{V}$? (Hint: How much larger is $\mathrm{I}_{\mathrm{DSAT}}$ for a transistor with $\mathrm{V}_{\mathrm{GS}}=1.2 \mathrm{~V}$ than with $\mathrm{V}_{\mathrm{GS}}=0.65 \mathrm{~V}$?)

$$
\begin{aligned}
& E_{C L}=\frac{2 V_{\text {SuI }}}{\mu} L=0.5 \mathrm{~V} \quad V_{T N}=0.2 \mathrm{~V} \\
& \frac{I_{\text {DAT }}\left(V_{G S S}=1.2 \mathrm{~V}\right)}{I_{\text {SAT }}\left(V_{G S}=0.65 \mathrm{~V}\right)}=\frac{(1.2 \mathrm{~V}-0.2 \mathrm{~V})^{2} /(1.2 \mathrm{~V}-0.2 \mathrm{~V}+0.5 \mathrm{~V})}{(0.65 \mathrm{~V}-0.2 \mathrm{~V})^{2} /(0.65 \mathrm{~V}-0.2 \mathrm{~V}+0.5 \mathrm{~V})} \approx 3.13
\end{aligned}
$$

So, even though access device is halt as wide, its current wald be higher thaw the pull-down device if $\Delta V \approx 0$. So, lets guess that both are is sat:

$$
\frac{1}{2} \frac{(1.2 V-\Delta V-0.2 V)^{2}}{(1.2 V-\Delta V-0.2 V)+0.5 V} \doteq \frac{(0.65 V-.0 .2 V)^{2}}{(0.65-0.2 V)+0.5 V} \rightarrow \Delta V \approx 278 \mathrm{mV}
$$

Check our guess:

$$
\begin{aligned}
& \begin{array}{l}
V_{G T a c c e s s}=1.2 V-278 m V-200_{m V}=722_{m V} \quad V_{\Delta S A 7}=\frac{722 m V \cdot 50 u_{m V}}{722 m V+500_{m V}} \approx 295 m V
\end{array} \\
& V_{\text {Daces }}=0.65 \mathrm{~V}-278 \mathrm{mV}=372 \mathrm{mV} \\
& V_{G T}{ }_{p d}=0.65 \mathrm{~V}-0.2 \mathrm{~V}=450 \mathrm{~m} \\
& V_{D S P d}=278 m V \\
& V_{\text {lSAT }}^{\text {pd }} \text { }=\frac{0.45 \mathrm{~V} \cdot 0.5 \mathrm{~V}}{0.45 \mathrm{~V}+0.5 \mathrm{~V}} \approx 237 \mathrm{MV} \\
& \text { pull down saturated } \sqrt{ } \\
& \text { 4/17 }
\end{aligned}
$$

b) (6 pts) Assuming that in your answer to part a) you calculated that the pull-down device is saturated, how much faster does the SRAM cell pull down the bitline when the wordline is driven to 1.2 V compared to if the wordline was driven to only 0.65 V ? (Note that most of the credit on this problem will be given for finding the right regions of operation and setting up the equations.)

Whew $\quad W L=1.2 \mathrm{~V}$:
$I_{\text {pull duma }}=I_{\text {SAT }}$ of the pull-dum device

$$
I_{\text {pulldcwa }} \propto 0.24 \cdot \frac{(0.65 V-0.2 V)^{2}}{(0.65 V-0.2 V)+0.5 V}
$$

When $W L=0.65 \mathrm{~V}$:

pull-dwa much biggers so it should be in lindens region.

Solve for ΔV :

$$
\begin{aligned}
& 0.12 \mu \mathrm{~m} \cdot 1 \mathrm{e} 7 \mathrm{~cm} / \mathrm{s} \frac{(0.65 \mathrm{~V}-\mathrm{U} .2 \mathrm{~V}-\Delta \mathrm{V})^{2}}{0.65 \mathrm{~V}-0.2 \mathrm{~V}-\Delta \mathrm{V}+0.5 \mathrm{~V}}=\frac{0.24 \mu \mathrm{~m}}{0.1 \mu \mathrm{~m}} \cdot 400 \mathrm{~cm}^{2} / \mathrm{V} \sec (0.65 \mathrm{~V}-0.2 \mathrm{~V}-\Delta \mathrm{V} / 2) \Delta \mathrm{V} \\
& \longrightarrow \Delta V \approx 52 \mathrm{mV} \\
& \text { SO, } \quad \frac{I_{\rho d}(W L=1.2 \mathrm{~V})}{I_{\rho d}(W L=0.5 \mathrm{~V})}=\frac{0.24(0.65 \mathrm{~V}-0.2 \mathrm{~V})^{2} /(0.65 \mathrm{~V}-0.2 \mathrm{~V}+0.5 \mathrm{~V})}{\left.0.12(0.65 \mathrm{~V}-0.2 \mathrm{~V}-0.052 \mathrm{~V})^{2}\right)(0.65 \mathrm{~V}-0.2 \mathrm{~V}-0.052 \mathrm{~V}+0.5 \mathrm{~V})} \\
& \frac{I_{P d}(W L=1.2 \mathrm{~V})}{I_{P l}(W L=0.65 \mathrm{~V})} \approx 2.417
\end{aligned}
$$

PROBLEM 3: Dynamic Logic Design (24 pts)
For this problem, you can assume that $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{C}_{\mathrm{G}}=2 \mathrm{fF} / \mu \mathrm{m}$, and $\mathrm{C}_{\mathrm{D}}=1 \mathrm{fF} / \mu \mathrm{m}$.
a) ($6 \mathbf{p t s}$) In the domino gate shown below, what is the minimum W_{n} necessary to ensure that the gate does not fail due to charge sharing? You can assume that with the sizing shown, the V_{IH} of the inverter is $3 / 4 \cdot \mathrm{~V}_{\mathrm{DD}}$, and that none of the source/drain regions have been shared.

$$
\begin{aligned}
& C_{\text {ap on }} \text { Node } X: \\
& C_{x}=C_{D C}+C_{D B}+C_{D A}+C_{G A} \\
&=3 \mu m \cdot 1 \mathrm{fF} / \mu m+1 \mu m \cdot 2 f f / \mu m \\
&=5 \mathrm{fF}
\end{aligned}
$$

$$
\begin{aligned}
C_{c_{\text {ut }}} & =C_{D A+}+C_{\text {Dpre }}+5 W_{N} C_{G} \\
& =2 \mathrm{fF}+10 \mathrm{fF} / \mu \mathrm{M} \cdot W_{N}
\end{aligned}
$$

Charge sharriry:

$$
\begin{aligned}
& V_{\text {DD }} \cdot C_{\text {ont }}=V_{\text {new }}\left(c_{\text {ant }}+C_{x}\right) \\
& V_{\text {New }}=\frac{C_{\text {out }}}{C_{\text {ont }}+C_{x}} \cdot V_{\text {DD }}
\end{aligned}
$$

To meet $V_{\text {IL }}$ of inverter: $V_{\text {new }}>\frac{3}{4} V_{D D}$

$$
\begin{aligned}
& \frac{2 \mathrm{ff}+10 \mathrm{ff} / \mathrm{mm} \cdot W_{N}}{2 \mathrm{ff}-1 \mathrm{luff} / \mu \mathrm{m} \cdot \mathrm{~W}_{s}+5 \mathrm{ff}}>\frac{3}{4} \\
& 2 \mathrm{ff}+10 \mathrm{ff} / \mu m W_{N} \geq 5.25 \mathrm{ff}+7.5 \mathrm{fF} / \mu \mathrm{m} \\
& W_{N} \\
& W_{N} \geq 1.3 \mu \mathrm{~m}
\end{aligned}
$$

b) (6 pts) Other than changing W_{n}, the sizes of the transistors in the dynamic gate, or adding a keeper, what else can change in the gate from part a) in order to mitigate the charge sharing issue? You should explain your changes and draw a new transistor-level schematic of the gate (no sizing necessary). To receive full credit on this problem, you should identify two independent changes; if you identify three changes you will receive bonus credit.
(1) Pre-chasge the internal vale:

(2) Recorder the gate to increase (out:

(3) Reduce the skew of the inverter to decrease VIH (dvesut reduce charge sharing, but reduces its impact on the output).

c) ($2 \mathbf{p t s}$) On the evaluation edge, what is the delay of the dynamic gate shown below as a function of $\mathrm{R}_{\text {sq,n}}, \mathrm{C}_{\mathrm{L}}, \mathrm{W}$, and $\mathrm{W}_{\mathrm{clk}}$? You can assume that $\mathrm{C}_{\mathrm{D}}=0$ and ignore slope effect.

$$
t_{p}=\ln (2) R_{s q N} \cdot L \cdot\left(\frac{1}{W}+\frac{1}{w_{c l k}}\right) \cdot C_{L}
$$

d) (2 pts) Assuming that In has an activity factor of $\alpha_{0 \rightarrow 1}$, how much power is consumed due to driving In? How about due to driving clk? You should provide your answers in terms of $\mathrm{W}, \mathrm{W}_{\mathrm{clk}}, \alpha_{0_{\rightarrow}}, \mathrm{C}_{\mathrm{G}}, \mathrm{V}_{\mathrm{DD}}$, and f.

$$
P_{I N}=\alpha_{D \rightarrow 1} C_{G} \cdot W V_{D D}^{2} f
$$

$$
P_{c l k}=C_{G}\left(\left.W_{c l k-1}\right|_{\mu m}\right) V_{\Delta D}^{2} f
$$

e) (8 pts) Increasing the size of the evaluation transistor (i.e., increasing $\mathrm{W}_{\mathrm{clk}}$) speeds up the dynamic inverter, but costs power. Using the results from parts c) and d), can you find an optimal $\mathrm{W}_{\mathrm{clk}} / \mathrm{W}$?
"Optimal" here can only mean that we are spending just the right amount of power for a given delay (or hitting the best delay for a given power). That means we should be locking at sensitivities of W and Wale and trying to balance them.

$$
\begin{aligned}
& \frac{\partial t_{p}}{\partial w}=-\frac{\ln (2) R_{\text {syN }} L C_{L}}{W^{2}} \\
& \frac{\partial t_{p}}{\partial W_{c l k}}=-\frac{\operatorname{lw}_{N}(2) R_{\text {sqL }} L C_{L}}{W_{c l k}^{2}} \\
& \frac{\partial P}{\partial w}=\alpha_{0 \rightarrow 1} C_{y} V_{D D}^{2} f \\
& \frac{\partial P}{\partial W_{c l k}}=C_{g} V_{D}^{2} \rho f \\
& S_{w}=-\frac{\alpha_{0 \rightarrow 1} C_{y} V_{D D}^{2} f}{I_{w}(2) R_{S Q \sim L} C_{L}} \cdot w^{2} \\
& S_{w a l k}=-\frac{C_{g} V_{\Delta O}^{2} f}{\operatorname{lv}(2) R_{s q^{w}} L C_{L}} \cdot W_{c l l}^{2} \\
& S_{w}=S_{w c k} \\
& -\left(\frac{C_{g} v_{D 0}^{2} f}{\ln (2) R_{s q W} L C_{L}}\right) \alpha_{0 \rightarrow 1} W^{2}=-\left(\frac{C_{g} V_{D D}^{2} f}{l_{\sim}(2) R_{S y N} L C_{L}}\right) W_{c \mid k}^{2} \\
& \longrightarrow \sqrt{\frac{W \text { ilk }}{W}=\sqrt{\alpha_{0 \rightarrow 1}}}
\end{aligned}
$$

PROBLEM 4: Timing and Clock Distribution (24 points)
In this problem we will be examining the pipeline shown below. The minimum and maximum delays through the logic are annotated on the figure, and the flip-flops have the following properties: $\mathrm{t}_{\mathrm{clk}-\mathrm{q}}=50 \mathrm{ps}, \mathrm{t}_{\text {setup }}=25 \mathrm{ps}$, and $\mathrm{t}_{\text {hold }}=25 \mathrm{ps}$. You can assume that the clock has no jitter.

a) ($6 \mathbf{p t s}$) What is the minimum clock cycle time for this pipeline? Are there any minimum delay violations?

Min. cycle: $C L_{1}$ has largest te, max, so:

$$
\begin{array}{r}
t_{c l k-q}+t_{p, \text { max }}+t_{\text {setup }}<T_{\text {cycle }} \\
50 p_{s}+300 p_{s}+25 \text { pps }<T_{\text {cycle }} \\
T_{\text {cycle }}>375 p 3
\end{array}
$$

Min. delay: $C L_{2}$ has smallest $t_{p, m i n}$ so:

$$
\begin{aligned}
t_{c l k-q}+t_{p, \text { min }} & >\text { thold } \\
50 p_{s}+25 p_{s} & >25 p s \\
50 p s & >0 p s
\end{aligned}
$$

\rightarrow No hold time problem.

b) ($4 \mathbf{p t s}$) Now we'll include the clock distribution network for this pipeline. Assuming that the delay of each inverter is nominally 50 ps , but that each inverter's delay varies randomly by $+/-20 \%$, now what is the minimum clock cycle time?

Each inverter delay varies by $\pm 10 \mathrm{ps}$. $C L_{1}$ has largest max delay, but since colly pick es up skew from inverters D and E (whereas path through $\left(L_{2}\right.$ has skew from B, E, C, and $\left.F\right)$, weed to check which one is the must critical.

$$
\begin{aligned}
& t_{p, \text { max }_{1}}+2 \Delta t_{\text {inv }}=300 p_{p s}+200_{p s}=320 p_{s} \\
& t_{\rho, \text { max }}+4 \Delta t_{\text {inv }}=275 \rho s+40 \rho s=315 \rho s
\end{aligned}
$$

So, $C L_{1}$ is still critical:

$$
\begin{gathered}
t_{\text {clk-q }}+t_{\text {pimax } 1}+t_{\text {setup }}+2 \Delta t_{\text {inv }}<T_{\text {cycle }} \\
T_{\text {cycle }}<395 \text { ps }
\end{gathered}
$$

c) ($\mathbf{4} \mathbf{~ p t s}$) Under these same conditions (ie., 50 ps nominal inverter delay, $+/-20 \%$ delay variation), can this pipeline fail any minimum delay constraints?

Path through CL_{2} has smallest $t_{p, m i s}$ and most skew, sou that's clearly where we need to worry absent failure.

$$
\begin{aligned}
t_{\text {clk-q }}+t_{p, \text { min } 2} & >t_{\text {hold }}+4 \Delta t_{\text {inv }} \\
50 \rho s+25 p s & >25 p s+40 p s \\
\mid u p s & >0 p s
\end{aligned}
$$

\longrightarrow No hold time violation.

d) (10 pts) If we replace the flip flops by pulsed latches with the same $\mathrm{t}_{\text {clk-q }}$, $\mathrm{t}_{\text {setup }}$, and $\mathrm{t}_{\text {hold }}$ as the flip-flops, and with $\mathrm{t}_{\mathrm{d}-\mathrm{q}}=\mathrm{t}_{\mathrm{clk}-\mathrm{q}}+\mathrm{t}_{\text {setup }}$, can the minimum cycle time of the pipeline be reduced without potentially failing a minimum delay constraint? If so, how wide must the pulses be, and what is the new minimum cycle time? If not, explain which path fails the minimum delay constraint.
Find max pulse width without hold time:

$$
\begin{gathered}
t_{c l k-q}+t_{p, \min 2} \leq 4 \Delta t_{i \sim v}+T_{o w}+t_{\text {hold }} \\
T_{\text {ow }} \leq 50_{p s}+25 p s-40 p s-25 p s \\
T_{\text {or }} \leq 10 p s
\end{gathered}
$$

Fur cycle time, luck at worst-case skew with Tun $=10 \mathrm{ps}$:

Fur path through $C L_{1}$: talle-q $+t_{\text {pimaxi }}+t_{\text {selup }}<T_{\text {rule }}-2 \Delta t_{1 a v}+T_{\text {on }}$

$$
\text { Teyde }>385 \text { ps }
$$

Check that path through Cl_{2} is still ok:

$$
\begin{aligned}
& t_{\text {clle-q }}+t_{p, m a \times 2}+t_{\text {setup }}<T_{\text {cycle }}-2 \Delta t_{i n v} \\
& 350_{p_{3}}<365 \mathrm{ps} \sqrt{ }
\end{aligned}
$$

* If you get the right Teyele, yin will receive full credit.
* If you chock that the CL2 path is still OK under these conditions, you will receive burns points.

PROBLEM 5: Arithmetic (18 pts)

In this problem we will look at designing a comparator whose output $\mathrm{C}_{\text {out }}=1$ whenever $\mathrm{A}>\mathrm{B}$, where A and B are unsigned binary numbers. Throughout this problem you can assume that you have both the true and complement versions of the inputs available to you.
a) (2 pts) If A and B are both only a single bit, draw a gate-level schematic (i.e., no transistors) showing how you would compute $\mathrm{C}_{\text {out }}$.

$$
\begin{aligned}
\text { If } A=1 \text { and } B=0, & A>B . \\
\text { Su: } & \bar{B}-D
\end{aligned}
$$

b) (5 pts) Now assume that A and B are both two bit numbers - i.e., we have inputs $\mathrm{A}_{1: 0}$ and $\mathrm{B}_{1: 0}$. To compare between A_{0} and B_{0} we can use the "half comparator" circuit you drew in part a). Draw a gate level schematic showing how you would implement a "full comparator" and use it to calculate the final $\mathrm{C}_{\text {out }}$.

c) (5 pts) Notice that these comparators have several characteristics that are very similar to adders. As a function of A and B , define new P (propagate) and G (generate) signals that are appropriate for comparators, and then write the logic equation that gives the $\mathrm{C}_{\text {out }}$ for a particular bit using P, G, and C_{in}.

Look at truth table again:

A	B	$C_{\text {out }}$	P	G
0	0	$C_{\text {in }}$	1	0
0	1	0	0	0
1	0	1	x	1
1	1	$C_{\text {in }}$	1	0

(Never use intermediate Counts,
so it duesut matter what
P is whew $G=1$)

$$
\begin{aligned}
& G=A \cdot \bar{B} \quad P=A+\bar{B} \\
& \\
& \text { or } \\
& P=\bar{A} \cdot \bar{B}+A \cdot B=\overline{A \oplus B} \\
& C_{\text {out }}=G+P \cdot C_{\text {in }}
\end{aligned}
$$

d) (6 pts) Given your definitions from part c), sketch a block diagram showing how you can implement an 8-bit "carry lookahead" comparator using the PG block shown below.

