

University of California College of Engineering
Department of Electrical Engineering and Computer Sciences
B. Nikolić

Thursday, November 7, 2002
6:00-7:30pm

EECS 141: FALL 2002—MIDTERM 2

For all problems, you can assume the following transistor parameters (unless mentioned otherwise):
NMOS:
$V_{T n}=0.4, k_{n}^{\prime}=115 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{D S A T}=0.6 \mathrm{~V}, \lambda=0, \gamma=0.4 \mathrm{~V}^{1 / 2}, 2 \Phi_{F}=-0.6 \mathrm{~V}$
PMOS:
$V_{T_{p}}=-0.4 \mathrm{~V}, k_{p}^{\prime}=30 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{D S A T}=-1 \mathrm{~V}, \lambda=0, \gamma=-0.4 \mathrm{~V}^{1 / 2}, 2 \Phi_{F}=0.6 \mathrm{~V}$

NAME	Last	First

GRAD/UNDERGRAD	

Problem 1: \qquad /16

Problem 2: \qquad /12

Problem 3: \qquad /10

Problem 4: \qquad / 6

Total: \qquad /44

PROBLEM 1. Logic Styles (16pts)

In this problem, for single-ended logic styles, assume that only true inputs are available, and for differential logic styles you can use both true and complementary inputs. Draw a gate implementing $Y=A B+C D$ in:
a) Standard complementary CMOS.
b) Domino logic.
c) Dual-rail domino.
d) Transmission-gate logic (differential logic style)

PROBLEM 2. Logical effort. (12pts)
a) (4pts) Find the logical effort for a domino buffer from the figure. Assume that the static inverter PMOS/NMOS ratio is appropriately skewed.

Fig. 1.

b) (8pts) Calculate the optimal stage effort (product of the logical effort and fanout) for the domino buffer with a foot switch (as one shown in Fig.1).
(Hint: we calculated that the optimal effort for the static complementary CMOS stage is about 4. Recalculate this for the domino buffer that consists of a dynamic inverter and a skewed static inverter).

> Optimal fanout $=$

PROBLEM 3: Arithmetic Circuits (10pts)

Consider an implementation of a bit-sliced 32-bit carry-lookahead adder implemented in static CMOS. The bit slice is 18 metal pitch, and the metal pitch is lum. You can assume that the resistance of all metal layers is $0.1 \Omega / \square$. The table below shows the dependence of the intra-layer capacitance per unit length for the metal layer that is used for implementation of this carry wire.

Spacing	Min	$1.5 * \mathrm{Min}$	$2 * \mathrm{Min}$	$2.5 * \mathrm{Min}$	$3 *$ Min or more
Capacitance	$80 \mathrm{aF} / \mu \mathrm{m}$	$60 \mathrm{aF} / \mu \mathrm{m}$	$50 \mathrm{aF} / \mu \mathrm{m}$	$45 \mathrm{aF} / \mu \mathrm{m}$	$40 \mathrm{aF} / \mu \mathrm{m}$

a) (2pts) How many bit slices does the longest carry wire cross in radix-2 implementation?
b) (2pts) How many bit slices does the longest carry wire cross in radix-4 implementation?
c) (2pts) What is the worst-case coupling capacitance of the wire when all the carries are routed vertically with double-width, double-spaced pitch?

$$
C_{\text {total }}=
$$

d) $(2 \mathrm{pts})$ How does this capacitance change if the wire pitch is doubled from the previous case, without changing the wire width?

$$
C_{\text {total }}=
$$

e) (2 pts) If the shielding wires are introduced in the same layer as shown before, what is the worst-case coupling capacitance?

$$
C_{\text {total }}=
$$

PROBLEM 4. Power dissipation (6 pts).

Compute the probability of the energy consuming transitions of the output, F of the logic function $F=\overline{A+B \cdot C}$, implemented in standard static CMOS, if the input probabilities are $p(A=1)=0.2, p(B=1)=0.5, p(C=1)=0.1$.

