

University of California College of Engineering Department of Electrical Engineering and Computer Sciences

B. Nikolić

Thursday, October 3, 2002 6:00-7:30pm

EECS 141: FALL 2002-MIDTERM 1

For all problems, you can assume the following transistor parameters (unless otherwise mentioned): NMOS: $V_{Tn} = 0.4, k'_n = 115 \mu A/V^2, V_{DSAT} = 0.6V, \lambda = 0, \gamma = 0.4 V^{1/2}, 2\Phi_F = -0.6V$ PMOS: $V_{Tp} = -0.4V, k'_p = -30 \mu A/V^2, V_{DSAT} = -1V, \lambda = 0, \gamma = -0.4 V^{1/2}, 2\Phi_F = 0.6V$

|--|

GRAD/UNDERGRAD	
----------------	--

- Problem 1: ____/ 12
- Problem 2: ____/ 20
- **Problem 3:** / 10
- Total: ____/ 42

PROBLEM 1. (10 pts) MOS transistor as a switch

a) (4 pts) Find the final value of the voltage V_o , as a response to a LH transition at the input as shown in Figures 1.a – 1.d. Assume $V_{TN} = |V_{TP}| = 0.5$ V. Assume that the capacitor is initially discharged, and ignore subthreshold conduction and body effect.

b) (2pts) When the output reaches its final value, a 2.5V to 0 step is applied to the input. Determine the energy consumed in the transistors from Figure 1.c. during the transition (in symbolic terms).

$E_{1 \rightarrow 0} =$

c) (6pts) For Figure 1.d, Find the energy dissipated in the transistor during the first $0 \rightarrow 1$ transition. Then, when the output reaches its final value, a 2.5V to 0 step is applied to the input, followed by the second 0 to 2.5V step. Find the energy dissipated in the transistor in the first $1 \rightarrow 0$ transition, and the second $0 \rightarrow 1$ transition (in symbolic terms).

First $E_{1 \rightarrow 0} =$ First $E_{0 \rightarrow 1} =$ Second $E_{1 \rightarrow 0} =$

PROBLEM 2. (20pts) Transistor sizing.

An inverter chain is shown in Figure 2. The first and the third inverter are supplied from $V_{DD1} = 2.5$ V, while the second inverter is supplied from $V_{DD2} = 1.5$ V. The input to the inverter chain swings between 0 and 2.5V. All transistors are minimum length, L = 0.25µm.

a) (8pts) If the width of the NMOS transistor in the second stage is $Wn = 1\mu$, find the size of the PMOS transistor, such that the second inverter exhibits the same LH and HL propagation delays (output *Out1*).

Wp =

b) (8pts) Determine the high and low output levels at the node *Out2*. Hint: You can make a reasonable assumption on the operating modes of transistors, but you have to prove that these assumptions are correct when you find the solution.

 $V_{OH} =$ $V_{OL} =$

c) (4pts) How would you resize the third inverter to improve the noise margins?

3. CMOS Scaling (10pts)

A microprocessor consumes 0.3 mW/MHz when fabricated using a $0.13 \mu \text{m}$ process. The area of the processor is 0.7 mm^2 . Assume a 200 MHz clock frequency, and 1.2 V power supply. Its leakage power is 0.1 mW. Assume short channel devices, but ignore second order effects like mobility degradation, series resistance, etc.

a) (5pts) If the supply voltage of the microprocessor scaled to 90 nm is reduced to 1.0 V, what will the area, frequency, power consumption, and power density be?

b) (5pts) If the threshold voltage in the 0.13 μ m process is 0.35V, what should be the threshold voltage in 90nm? Assuming 80mV/dec subthreshold slope, what would be the leakage power of the new processor?