EECS 140 SPRING 96 MIDTERM 1
RW BRODERSEN
Use the following model parameters
$K^{\prime}=K^{\prime}=100$ "mu" A/V^2
LAMBDAn $=$ LAMBDAp $=.02$
GAMMAn $=$ GAMMAp $=0$
Vtn $=$ Vtp $=1 v$
1a) Vt0
b) GAMMA
c) $\mathrm{k}^{\prime}$
d) LAMBDA
2) (W/L) mx

3a) Ids
b) Vout
c) Rin

Rout
Av
4) Vout, max

Vout, min
5) Rl

Rref
6) Iout/Iref
7) (W/L) m1
(W/L) m2
(W/L) m3
(W/L) m4
(W/L) m5
R
8) Rout
9) Rout

Av

2)
$(\mathrm{W} / \mathrm{L}) \mathrm{m} 1=(\mathrm{W} / \mathrm{L}) \mathrm{m} 2=(\mathrm{W} / \mathrm{L}) \mathrm{m} 3=(\mathrm{W} / \mathrm{L}) \mathrm{m} 4=(\mathrm{W} / \mathrm{L}) \mathrm{m} 5=10$ What is the value fo (W/L)mx so that Vout has a DC coltage of $0 V$ ? (You don't ne
3)
a) What is Ids of m1?
b) What is the DC voltage at Vout?
c) If Ids(m1) = 10 "mu" A, what are Rin, Rout, and Av
4)

If Vin can vary from $0-5 \mathrm{~V}$, what is the range of Vout?
5)

Calculate the values of Rl and Rref so that the DC voltage at Vout $=0 \mathrm{~V}$ and the
6)

Assume all transistors have $\mathrm{Vt=1V}$ and Vdsat=. 2 V with LAMBDA= . 1 What is the ratio Iout/Iref if Vo is at 0V?
7)

Choose the (W/L)'s and R so that the current source gives and Iout = 100 "mu" A
8)

What is Rout?
9)
a) What is Rout?
b) What is $\mathrm{Av}=$ Vout $/\left(\mathrm{Vi}^{\wedge}+-\mathrm{Vi}^{\wedge}-\right)$ ?

