Analog Integrated Circuits

EECS 140 SPRING 1995

Midterm 2

Thursday, April 6, 1995

Name: ...

This exam has 3 problems with equal weights. Show how you arrived at each result to get credit. Please *mark* results clearly with a box around them. Write the answers directly on the exam sheets.

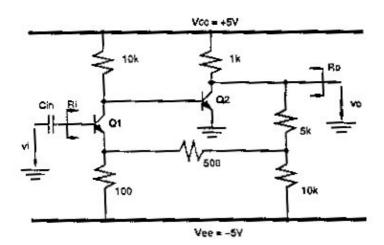
Device Parameters: (unless otherwise indicated)

NPN: $I_s = 5x10^{-15}A$, $\beta = 100$, $V_A = 100V$, $V_{BE}(on) \neq 0.7V$, $V_{CE}(sat) = 0.2V$,

 $C_{je0} = 1pF$, $\varepsilon = 0.3ns$, $C_{\mu} = 0.5pF$

PNP: $I_s = 2x10^{-15}A$, $\beta = 50$, $V_A = 50V$, $V_{BE(on)} \approx 0.7V$, $V_{CE}(sat) = -0.2V$,

 $C_{je0} = 0.5pF$, $\mathcal{E} = 20ns$, $C_{\mu} = 0.5pF$

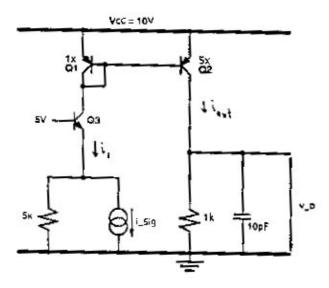

NMOS: $\mu C_{ox} = 50 \mu A/V^2$, $V_{th0} = +0.7V$, $\lambda = 0.02V^{-1}$ @ L = 4um, $\lambda = 0.4 \text{sqrt}(V)$, $2 \mu = 0.6V$

V₇≈ 26 mV (300 K)

Problem #1

In the amplifier shown below a dc biasing circuit (no shown) makes that the large signal output voltage is $V_0 = 1V$. C_i is a large coupling capacitor. Assume that the circuit is compensated to ensure stability.

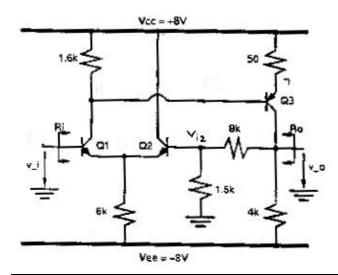
- (a) what is the type of feedback used?
- (b) what is the feedback factor, f?
- (c) what is the loop gain, T, at low frequence?
- (d) what is the low-frequency, small-signal voltage gain v_0/v_i of the circuit?
- (e) what is the low frequency input resistance, R_i ?
- (f) what is the low frequency output resistance, R_o ?



Problem #2

For the circuit below, find

- (a) the low-frequency transresistance $R_x = v_o/i_{sig}$, and
- (b) the bandwidth $f_{-3}db$ (use zero valued time constants).


(c) write and expression for the frequency response $V_o(s)/I_{sig}(s)$ (polynomial is s). Include only the dominant pole and ignore zeroes.

Problem #3

In the amplifier below you may neglect base currents when determining dc conditions.

- (a) What is the overall feedback used?
- (b) Find the low-frequency loop-gain T_o .
- (c) Determine the closed-loop voltage gain, v_o/v_i at low frequencies.
- (d) Determine the closed-loop input and output resistances R_i and R_o .

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley

If you have any questions about these online exams please contact examfile@hkn.eecs.berkeley.edu.