Problem #1
1. A two-stage amplifier is shown in Figure Q2.1. Values of the BJT parameters for the two devices are given in the figure.
 a. For $V_A = \infty$ and $R_e = 0$, estimate the frequency response of the overall voltage gain, $A_v = \frac{v_o}{v_s}$.
 b. How is the frequency response changed if $V_A = 100V$? (Use approximations to arrive at a conclusion.)
 c. How does the product of the low-frequency gain and the -3dB bandwidth change as R_e is increased from zero to 10ohms?

Note: this problem refers to Figure Q2.1 which is a circuit diagram

Problem #2
2. A feedback amplifier is shown in Figure Q2.2. Bias levels and circuitry are assumed present to produce the specified collector currents, $I_c = 1mA$.
 a. Establish whether the overall feedback is positive or negative.
 b. With respect to the output node v_{o1}, what is the value of the open-loop gain, a_L?
 c. What is the value of the open-loop gain a_L with respect to the output node v_{o2}?
 d. Estimate the value of the output resistance seen from v_{o1} and from v_{o2}.

Note: this problem refers to Figure Q2.2 which is a circuit diagram

Problem #3
3. A feedback amplifier is modeled as in Figure Q2.3.
 a. Sketch the locii of the natural frequencies of the closed-loop amplifier as the amplifier gain value, a_v, is increased from zero.
 b. For $R_f = 100k$, what value of a_v is required to achieve a maximally flat magnitude response for the closed-loop gain, $A_v(s)$?
 c. If the value of a_v is fixed at -100, and if a_L is varied by changing R_f, what value of R_f is needed to achieve the MFM response?

Note: this problem refers to Figure Q2.3 which is a circuit diagram
Problem #4

4. A simple MOS amplifier is shown in Figure Q2.4. The biasing elements provide drain currents of $I_D = 0.1mA$. Device parameters include $W/L = 10$, $K_P = 40uA/v^2$, $\Lambda = 0$.

a. For a 'following' measurement system passband of 2megHz, estimate the value of the minimum detectable signal with respect to v_s.

b. If a feedback resistance, $R_f = 100k$, is ac-connected in a shunt-shunt arrangement without changing the bias state, how is the result of Part a changed?

Note: this problem refers to Figure Q2.4 which is a circuit diagram.