Q1 (a)
1.) (59 points total)

![Circuit Diagram]

Figure 1

a.) (10 points)
Suppose $v_{i_1} = v_{i_2} = v_{i_{CM}}$ is set so that transistors M_1-M_6 are in saturation. What region does transistor M_7 operate in?
What is the nominal drain current I_D in M_7?

Q1 (b)
Draw a small signal half-circuit model corresponding to differential mode operation.

Q1 (c)
Determine the differential mode gain A_{DM}. You may express your solution in terms of g_m, r_o, etc.

Q1 (d)
Draw a small signal half-circuit model for common mode operation.

Q1 (e)
Determine the common mode gain A_{CM}. You may express your solution in terms of g_m, r_o, etc.
Q2 (a)

2.) (30 points total)

Determine the minimum supply voltage V_{DD} that keeps all transistors in saturation. Express your answer in terms of V_{T8}, V_{Tp}, ΔV_1, ΔV_2, ΔV_3, ΔV_4, ΔV_5, etc.

Q2 (b)

Determine R_{out}, the small signal output resistance looking into the drain of M_6.

Q2 (c)

Determine the minimum supply voltage V_{DD} that keeps all transistors in saturation. Express your answer in terms of V_{T8}, V_{Tp}, ΔV_1, ΔV_2, ΔV_3, ΔV_4, ΔV_5, etc.