UNIVERSITY OF CALIFORNIA AT BERKELEY

College of Engineering Department of Electrical Engineering and Computer Science

R. Brodersen

EE140
Oct. 15, 2003
Name:
SID:

Use the following parameters:
$\mathrm{Vt}_{\mathrm{t}}(\mathrm{NMOS})=\mathrm{Vt}_{\mathrm{t}}(\mathrm{PMOS})=0.4 \mathrm{v}$
$\mathrm{K}^{\prime}($ NMOS $)=\mathrm{K}^{\prime}(\mathrm{PMOS})=10 \mathrm{~mA} / \mathrm{V}^{2}=10^{-2} \mathrm{~A} / \mathrm{V}^{2}$
$\mathrm{Ff}=0.3 \mathrm{v} ;$ garma $=1 \mathrm{~V}^{1 / 2}$; lamda $=0.02$

Assume all W/L=10
1.

What is VB so that $V_{\text {out }}=1.5 v ?$ VB $=$
2.

a. What is the voltage at V_{A} ?
b. What is the maximum swing in the positive direction at Vout?
c. What is the most negative swing at Vout?
3.

a. What is $\mathbf{G m}=$ iout $/ \mathbf{V}$ in ?

b. What is Rout?

c. What is Av?
4.

For the bipolar: $A E=1$ for Q1 $\mathrm{AE}_{\mathrm{E}}=\mathbf{4}$ for Q2 $V_{\text {th }}=\mathbf{2 6 m V}$

What is the value of Rez that sets Iout $=10 \mu \mathrm{~A} ? \quad$ REZ $=$
5.

$-1 V<=$ Vin $^{<=} \mathbf{1 V}$
What is the value of \mathbf{R} which gives the maximum efficiency?
$\mathbf{R}=$
(Hint: Find an expression for \mathbf{R} before you plug in numbers)
6.

a. What is Gm?
b. What is Rout?
c. What is A_{v} ?
7.

a. What is the Ids of transistor M6?
b. Assume that $\mathrm{gm}_{\mathrm{m}}=0.01, \mathrm{r} 0=100 \mathrm{k}, \mathrm{gmb}=0$, for all the transistors. What is Vout / Vin?

