UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering ## Department of Electrical Engineering and Computer Sciences ### MIDTERM EXAMINATION EE 130/230A: Spring 2016 Time allotted: 60 minutes | NAME: | |--| | STUDENT ID#: | | INSTRUCTIONS: | | 1. Unless otherwise stated, assume a. temperature is 300 K b. material is Si | | SHOW YOUR WORK. (Make your methods clear to the grader!) Specially, while using chart, make sure that you indicate how you have got your numbers. For example, if reading off mobility, clearly write down what doping density that corresponds to. Clearly write down any assumption that you have made. Clearly mark (underline or box) your answers. Specify the units on answers whenever appropriate. | | SCORE:1/20 | | 2/ 20 | | Total/ 40 | #### PHYSICAL CONSTANTS | Description | Symbol | Value | PROPERTIES OF | SILICON | AT 300K | |----------------------|---------------|-------------------------|-------------------------|-----------------------------|---------------------------| | Electronic charge | q | 1.6×10 ⁻¹⁹ C | <u>Description</u> | Symbol | Value | | Boltzmann's constant | k | 8.62×10^{-5} | Band gap energy | E_{G} | 1.12 eV | | | | eV/K | Intrinsic carrier | $n_{\rm i}$ | 10^{10}cm^{-3} | | Thermal voltage at | $V_{\rm T} =$ | 0.026 V | concentration | | | | 300K | kT/q | | Dielectric permittivity | $\varepsilon_{\mathrm{Si}}$ | 1.0×10 ⁻¹² | | | | | | | F/cm | #### **USEFUL NUMBERS** $$V_T \ln(10) = 0.060 \text{ V}$$ at $T=300\text{K}$ #### **Depletion region Width:** $$W = \sqrt{\frac{2\varepsilon}{q} \left(\frac{1}{N_u} + \frac{1}{N_d}\right) \left(V_{bi} - V_{Applied}\right)}$$ $$n_i = \sqrt{N_c N_v} \exp(-E_G / 2k_B T)$$ #### **Electron and Hole Mobilities in Silicon at 300K** #### Prob 1 [20 pts]. #### (a) [8 pt] - (i) What kind of dopant would one use to dope an III-V semiconductor like GaAs. What determines whether or not it is a donor or acceptor? [4 pt] - (ii) After doping a Si by donors it is found that the carrier concentration does not change appreciably from OK-400K. How can this happen? Explain by drawing Ec, Ev and the energy level for the dopants, Ed. [4pt] (b) [6 pt] A compensated Si sample was measured and it was found that the conductivity is σ =16 (ohm-cm)⁻¹ and mobility of 375 cm²/V-sec. Find out the doping concentration of the sample. #### (c)[6 pts] Please indicate 'True' or 'False' | Phenomenon | True/False | |---|------------| | Impurity scattering goes up at higher temperature | | | In a solid electrons and holes see same electrostatic potential | | | At equilibrium flows of electrons and holes balance each other to give zero current | | | In Si electron velocity saturates at high electric field due to impurities | | | When low level injection holds, $np = n_t^2$ also holds | | | Diffusion depends on the total number of carriers and not only on the excess carriers | | **Prob 2: [20 pts]** For the P-N junction diode shown below, answer the following questions. Note that the picture shown below only shows the amplitude (and not 'sign') of the doping concentrations. While drawing the diagrams, - please be careful to indicate relative quantities (such as the amplitude of charge densities, the curvature of potential profiles, the width of the depletion region etc) - · For each diagram you need to draw quantities at both the P and N sides - If you are using the same diagram to answer multiple questions, please mark the answers clearly. - (i) [2 pt] Draw energy band profile at zero bias - (ii) [3 pt] Calculate the built in potential - (iii) [3 pt] Draw the electric field and potential profile - (iv) [3 pt] Calculate the depletion region width - (v) [3 pt] Draw the energy band profile if a reverse bias of |Vd| is applied. - (vi) [6 pt] Draw the energy band profile at zero bias if the temperature is increased from 300K to 400K. Clearly mention all the approximations.