## UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

EECS 130 Spring 2005 Professor Chenming Hu

## **Midterm II**

March 31, 2005

Name: SID:

D: \_\_\_\_\_

**Instructions:** 

Print your name on the cover page CLEARLY now Show major intermediate steps on exam pages to facilitate grading Make sure your copy of the exam paper has 7 pages (including cover page) Closed book. Two sheets of note are allowed.

## **Physical Constants:**

| Electronic charge          | q                                      | 1.6 x 10 <sup>-19</sup>                      |
|----------------------------|----------------------------------------|----------------------------------------------|
| Boltzmann's constant       | k                                      | 1.38 x 10 <sup>-23</sup> J K <sup>-1</sup>   |
| Thermal voltage at T=300 K | kT/q                                   | 0.0259 V                                     |
| Permittivity of vacuum     | ε <sub>0</sub>                         | $8.85 \text{ x } 10^{-14} \text{ F cm}^{-1}$ |
| Permittivity of oxide      | $\epsilon_{0x} = 3.9 \epsilon_0$       |                                              |
| Permittivity of silicon    | $\varepsilon_s = 11.7 \ \varepsilon_0$ |                                              |
|                            |                                        |                                              |

1. The MOS CV for N<sup>+</sup>-poly gate and substrate doping  $N_a = 10^{17} \text{cm}^{-3}$  is given below (18 pts.)



a) Plot the CV for a **lower** N<sub>a</sub>. (*Note that the original CV is drawn in dotted line for reference*) (6pts.)



b) Plot the CV for a thinner  $T_{ox}$ . (Note that the original CV is drawn in dotted line for reference) (6pts.)



c) Plot the CV for the case of **P**<sup>+</sup>**-poly gate**. (*Note that the original CV is drawn in dotted line for reference*) (6pts.)



2. Metal-Oxide-Semiconductor Capacitor (20pts.)



- a) Does this MOS capacitor have a N or P-type substrate? Give one sentence explanation. (4pts.)
- b) Is this a transistor CV or a HF capacitor CV? Give one sentence explanation. (4pts.)
- c) Is the poly gate  $N^+$  or  $P^+$  type? Give one sentence explanation. (4pts.)
- d) What is the substrate doping  $N_{sub.}$  (4pts.)
- e) What is the oxide thickness  $T_{ox}$ ? (4pts.)

- 3. Given Na =  $10^{17}$  cm<sup>-3</sup>, T<sub>ox</sub> = 10 nm, N<sup>+</sup>-poly gate MOS capacitor is biased at V<sub>g</sub> = 2V.
  - a) Find  $\phi_s$ ,  $W_{dep}$ , and Capacitance @ HF (12 pts.)
  - b) Sketch the energy-band diagram (5pts.)
- 4. N<sup>+</sup>-i-P<sup>+</sup> diode (15pts.)



a) Plot electric field  $\epsilon$  vs. x at zero bias. Indicate the value of the peak electric field. (5pts.)



- b) Assume breakdown occurs when electric field exceeds 5 x  $10^5$  V/cm. What is the breakdown voltage of the diode? (5pts.)
- c) What is the capacitance at 2V reverse bias? (5pts.)
- **5.** Consider a silicon P-N junction. Assume the diode is under forward bias and the depletion thickness is negligible. Make your plot consistent with any quantitative information that are given. (30pts.)

P
 
$$N_a = 5 \ge 1014 \text{ cm} - 3$$
 N
  $N_d = 1 \ge 10^{15} \text{ cm}^{-3}$ 
 $\tau_n = k, \ \mu_n = h$ 
 $\tau_p = 2k, \ \mu_p = h/2$ 

a) Plot  $p_N'(x)$  and  $n_{p'}(x)$  on both sides of the junction. Label the curves. Mark the diffusion length of p and n sides on the x-axis. (5pts.)



 b) Plot the majority and minority current densities on both sides of the junction. Label the curves. Mark the diffusion length of p and n sides on the x-axis. (5pts.)



c) Plot the rate of the recombination  $(\#/cm^3)$ . (5pts.)



d) Write down or derive an expression of the diode current density under reverse bias? The answer may contain "h", "k" and other commonly known quantities. (5pts.)

e) Plot  $J_p(x)$  for x>0. Assume  $\tau_p = k/2$ . Mark the diffusion length on the x-axis. (5pts.)



f) Plot charge density  $\rho(x)$  (Coul/cm<sup>3</sup>) on both sides under zero bias. Write down the peak values of the p(x). Of course the depletion width cannot be neglected in this case. (5pts.)

