Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Problem 1: Semiconductor Fundamentals [30 points]

A uniformly doped silicon sample of length 100μ m and cross-sectional area 100μ m² is maintained at 300K under equilibrium conditions. It has an acceptor density of $N_a = 10^{1}6$ cm⁻³ and a hole concentration $p = 2.1 \times 10^{4}$ cm⁻³.

- (a) Determine the electron concentration, n. [5 pts]
- (b) Determine the donor density, N_d . [5 pts]
- (c) What is the mean scattering time for holes in this sample? [5 pts] Assume $m_h^* = 0.386m_o$.
- (d) What is the resistance of this sample? [5 pts]
- (e) Draw the energy-band diagram, show the relative positions of E_c , E_v , E_f , and $_i$ for this sample at 600K. (Note: You should consider the increase in n_i with temperature. Neglect the change of E_g with temperature.) [10 pts]

Problem 2: p-n Junction Diode [35 points]

Consider the following silicon p-n step-junction diode maintained at 300K:

 $N_a = 10^{17} cm^{-3} N_d = 10^{15} cm^{-3} \tau_n = 1 \mu s \tau_p = 1 \mu s W_E = 1 \mu m W_B = 500 \mu m$ The cross-sectional area of the diode $A = 10^{-3} cm^2$.

- (a) Determine the built-in potential, ϕ_i . [5 pts]
- (b) What is the reverse breakdown voltage, BV, of the diode? [5 pts] Assume that the critical electric field for breakdown $E_1 = 3 \times 10^5$ V/cm.
- (c) What is the capacitance of the diode at zero bias $(V_a = 0 \text{ V})$? [5 pts]
- (d) What is the reverse saturation current, I_o , of the diode? [10 pts]
- (e) What is the stored hole charge inside the diode, for $V_a = 0.5$ V? [5 pts]
- (f) The limit of low-level injection is normally assumed to be when the minority-carrier density at the edge of the depletion region becomes equal to one tenth the majority-carrier density in that region. Determine the value of V_a at which the limit of low-level injection is reached. [5 pts]

<u>Problem 3</u>: Bipolar Junction Transistor [35 points]

Consider an npn silicon BJT of area $A = 10^{-6} cm^2$ maintained at 300K and operating in the active region with $V_{BE} = 0.7V$ and $V_{CB} = 5V$, so that $x_B = 0.6 \mu m$:

Each region of the BJT is uniformly doped: $N_E = 10^{18} cm^{-3}$, $N_B = 10^{16} cm^{-3}$, $N_C = 10^{15} cm^{-3}$. The minority carrier diffusion constants are $D_E = 4cm^2/2$, $D_B = 30cm^2/s$, $D_C = 12cm^2/s$. The minority carrier lifetimes are $\tau_E = \tau_B = \tau_C = 10^{-6}$ s.

- (a) What is the common emitter d.c current gain, β_F , of this transistor? [5 pts]
- (b) Sketch the energy-band diagram, indicating the positions of the Fermi levels in the quasi-neutral regions. [10 pts]
- (c) What is the collector current, I_C ? [5 pts]
- (d) For what value of V_{CB} will I_C increase by 20%? [10 pts]
- (e) Estimate the Early Voltage, V_A . Hint: Use your result from part (d) and note that $V_A = I_C/g_0 = -x_B/(dx_B/dV_{CB})$. [5 pts]

<u>Problem 4</u>: Metal-Oxide-Semiconductor Capacitor [25 points] An $Al - SiO_2 - Si$ capacitor of area $A = 100 \mu m^2$ has substrate doping $N_a = 10^{17} cm^{-3}$ and oxide thickness $x_{ox} = 100$ angstroms. The fixed charge density at the $Si - SiO_2$ interface $Q_f = 5 * 10^{10} q/cm^2$.

- (a) Calculate the flatband voltage, V_{FB} [5 pts] $(q\Phi_M = 4.1eV; qX_{Si} = 4.05eV)$
- (b) Calculate the threshold voltage, V_T [5 pts].
- (c) Sketch the low-frequency C-V curve for this capacitor, indicating the maximum and minimum capacitance values on your plot. [5 pts]
- (d) Sketch the equilibrium energy diagram of the MOS structure. Indicate the value of the bandbending, qV_s in the silicon. [10 pts]

Problem 5: MOS Field-Effect Transistor [45 points]

A silicon n-channel MOSFET has $W = 10 \mu m$, $L = 1 \mu m$, and $x_{ox} = 100$ angstroms. At $V_{DS} = 0.1V$, the drain current is:

 $I_D = 40 \mu A$ at $V_G = 1.6V$, $I_D = 90 \mu A$ at $V_G = 2.6V$

- (a) Calculate the effective electron mobility. [5 pts] (Use the first-order model, i.e. the square law model)
- (b) Calculate the threhold voltage, V_T [5 pts]
- (c) Without considering velocity saturation, what is I_D at $V_{DS} = 5V$ and $V_G V_T = 3V$? [10 pts]
- (d) What is I_D at $V_{DS} = 5V$ and $V_G V_T = 3V$, with velocity saturation? [5 pts] (Assume that the critical electric field $E_C = 10^4 V/cm$
- (e) Indicate in the table below (by checking the appropriate box for each line) the consequences of increasing the body doping, N_a , in an n-channel MOSFET. [20 pts]

	increases	decreases	remains the same
Transconductance			
Body effect parameter, γ			
Channel-length modulation parameter, λ			
Subthreshold swing, S			
Drain-induced barrier lowering			

Problem 6: Metal-Semiconductor Contact [30 points] A Schottky-barrier diode is made by depositing tungsten $(q\Phi_M = 4.5eV)$ on n-type silicon. T = 300 K $N_d = 10^{1}5cm^{-3}$ Area of the diode $A = 10\mu m^2$

- (a) Determine the built-in potential, ϕ_i [5 pts]
- (b) What is the equilibrium depletion width, $x_d(V_a = 0V)$? [5 pts]
- (c) What is maximum electric field E_{max} , for $V_a = 0V$? [5 pts]
- (d) Sketch the V_a vs $1/C^2$ graph, label the x and y axis intercepts respectively. [10 pts]
- (e) Can a Schottky-barrier diode be used in place of the pn emitter junction in a pnp BJT? Explain briefly.[5 pts]