(1) Consider the following mechanical system where \(m_1 \) and \(m_2 \) are the masses of the blocks, \(k_1 \) and \(k_2 \) are spring constants, \(b_2 \) is the damper constant, and \(F \) is the applied force. Assume the surface is frictionless. Input to the system is the force \(F \) and the output of the system is the speed of \(m_1 \). Derive a state-variable model for this system (12%).

(2) A nonlinear system is modeled by the following differential equation where \(u \) is the input variable. The output variable of the system is \(y = (q+1)u \)

\[
\ddot{q} + (\dot{q} + q)q - 1 = u
\]

(2a) Write a nonlinear state equation for this system. (6%)
(2b) List all the equilibrium state(s) of the system with \(u = 0 \). (6%)
(2c) Linearize the system at all equilibrium states found in (2.b). The linearized equation should be in the linear state variable form (i.e., the matrix form). (8%)

(3) Consider the following system where \(u \) is the input, \(y \) is the output and \(d \) is the disturbance.

(3a) Find the transfer function from \(U(s) \) to \(Y(s) \). (8%)
(3b) Find the value of \(K \) such that the damping ratio of the complex poles of the closed-loop system is 0.5. (6%)
(4) Consider the following feedback system.

(a) What is the relationship, if any, between the poles of the transfer function from U(s) to Y(s) and the poles and zeros of \(G_f(s), G_d(s), \text{and } G_l(s) \) ? You must explain your answer. (4%)

(b) What is the relationship, if any, between the zero of the transfer function from U(s) to Y(s) and the poles and zeros of \(G_f(s), G_d(s), \text{and } G_l(s) \) ? You must explain your answer. (4%)

(c) How are the zeros of the transfer function from U(s) to Y(s) affected by the value of K as it varies from 0 to \(\infty \)? You must explain your answer. (4%)

\[
\begin{array}{c}
\text{U(s)} \\
\downarrow \\
\text{K} \\
\downarrow \\
G_f(s) \\
\downarrow \\
G_d(s) \\
\downarrow \\
Y(s)
\end{array}
\]

\(G_l(s) \)

(5) Consider the following unity feedback system.

(a) Sketch the root locus. Specifically, you must show: asymptotes and break away point (10%)

(b) Find the maximum value of K that gives the closed loop system all \textit{real} poles. (6%)

\[
\begin{array}{c}
\text{U(s)} \\
\downarrow \\
\text{K} \\
\downarrow \\
\frac{1}{s(s+6)(s+9)} \\
\downarrow \\
\text{Y(s)}
\end{array}
\]

(6) Consider the following unity feedback system.

(a) Assume \(C(s) = K \) (a constant), sketch the Nyquist plot (does not need to be precise). You must show the direction of the plot and the encirclement. (6%)

(b) Assume \(C(s) = K \), prove that the system is unstable for all positive K. (You may use any method you learned from this class). (6%)

(c) Design a compensator \(C(s) \) that stabilizes the system.

Hint: \(C(s) \) should have 1 pole, 1 zero, and a gain term K. Use the root locus concept to determine the location of pole and zero. You can then select a value for K. Your design should not involve pole-zero cancellation. You must prove that your design results in a stable closed loop system. (12%)

\[
\begin{array}{c}
\text{U(s)} \\
\downarrow \\
\text{K} \\
\downarrow \\
\text{C(s)} \\
\downarrow \\
\frac{s-2}{s} \\
\downarrow \\
\text{Y(s)}
\end{array}
\]