1. The dynamic of a nonlinear system is modeled by the following equation where \(u \) is the input variable and \(y \) is the output variable.

1.a) For \(u=0 \), there are more than one equilibrium state. One of the equilibrium states is the origin (i.e., all state variables are zero). Find another equilibrium state (for \(u=0 \)). (10%)

1.b) Linearize the system about the equilibrium found in 1.a) and express the linearized equation in the standard linear state equation form. (10%)

\[
\begin{align*}
\dot{p} &= p \cos(\dot{p}) + q(1+u) \\
\dot{q} &= p(p^2 - q) \\
y &= p(q + u)
\end{align*}
\]

2. Consider the following unity feedback system.

2.a) Give a necessary and sufficient condition on \(C(s) \) and/or \(G(s) \) such that the system is of type \(k \) (an integer) with respect to the input \(r(s) \). (10%)

2.a) Consider the following statement. If you agree with this statement, prove it. If not, explain why the statement is not true. (10%)

If this system is of type \(k \) (an integer) with respect to the input \(r \), it must be also of type \(k \) with respect to the disturbance \(d(s) \).

3. Consider the following closed loop system with a PID controller.

3.a) Assume \(K_i = 0 \), find \(K_p \) and \(K_d \) such that

- (i) the output is 0.05 at steady state when a unit step is applied to the disturbance input (and \(r(s)=0 \)) and
- (ii) the overshoot is less than 5\% at the output \(y(s) \) due to a unit step input from \(r(t) \) (5\% overshoot = 0.7 damping ratio) (10%)

3.b) Assume \(K_i = 1 \), \(K_d = 1 \), find the range of \(K_p \) such that the system is stable. (10%)

![PID Controller Diagram](attachment:image.png)
(4) Sketch the root locus for the following system. Determine all features of the root locus that apply to this particular system. Based on the root locus, find a positive value of K (if such a value exist) such that the system is stable. (20%)

\[
\frac{s^2}{(s^2+1)(s+1)}
\]

(5) Plot the Nyquist plot of the following system. Use the concept of Nyquist criterion, find a positive value of K (if such a value exist) such that the system is stable. (20%)

\[
\frac{s+2}{s^2(s-2)}
\]