EE 127 / EE 227AT

Solution Midterm 2 Spring 2016

Please write your answers on these sheets, use the back sides if needed. Show your work.
You can use a fact from the slides/book without having to prove it unless you are specifically
asked to do so. Be organized and use readable handwriting. There is a page for scratch work
at the end.

Exercise 1 (Duality.) Consider the original problem mingegn fo(z) subject to fi(z) < 0
foralli=1,...m

(a) (5 pts.) Write the Lagrangian function.

(b) (5 pts.) Write the dual function.
g(A\) =inf, L(z, \).

(c) (10 pts.) Prove that the dual function is concave.

We show that —g(\) = sup, — fo(z) = > 7", Aifi(z) is convex. For each z, the term inside
the maximization is affine in A and thus also convex. Since the maximum of a collection
of convex functions is a convex function, the conclusion follows.

(d) (10 pts.) Prove that for A > 0, g(\) is no larger than the optimal value p* of the original
problem. You can assume that an optimal solution exists for the original problem.

If x is feasible in the original problem, then f;(x) < 0 for all ¢. Thus, for such z,
g\ < folx +ZAfZ ) < folx).

Since this holds even for an optimal solution, the right-hand side can be made equal to
p* and the conclusion follows.



(e) (5 pts.) Suppose that fi(x) = ||z — a3 < 0. In this case, does Slater condition hold for
the original problem? Explain.

In this case, only = = a is feasible. But then fi(z) = 0 and not negative as required by
Slater. So the answer is no.

(f) (10 pts.) Suppose instead that fi(z) = ||z —a||? — b < 0 for b > 0 and that there
are no other constraints. Also, let fy(x) = c'z, for a nonzero vector c¢. Show that
= —(Vb/|cll2)c + a, with X\ = ||c||2/(2v/D), satisfies the KKT conditions.

The gradient of the Lagrangian gives ¢ 4+ 2A\(z — a) = 0. Thus, A is not zero, which
implies through complementary slackness that ||z — al|3 = b. Plugging in the given z,
we see that this is indeed satisfied. The suggested A is nonnegative so dual feasibility is
satisfied. We only need to check the gradient condition:

el Vb
c+2Nzx—-a)=c+2—= | —-——-—c+a—a | =0.
oy =ct 2 Tl

(g) (10 pts.) Suppose that there are two candidate vectors for c. One with a small Euclidean
length (case A) and one with a large Euclidean length (case B). Which case (A or B)
will have an optimal value that is more sensitive to changes in the right-hand side of the
constraint? Give an argument based on a quantitative estimate.

Sensitivity analysis tells us that —\ is an estimate of how much the optimal value will
change under changes in the right-hand side. Since A is directly proportional to ||c||2
from above, case A will be less sensitive than case B.

Exercise 2 (Risk.) (10 pts.) In optimization problems involving superquantile risk mea-
sures, we have functions of the form f(z) =z, + (1/(1 — «)) Zjvzl p;j max{0, g(z,v9) —z,},
where p; > 0, a € [0,1), and z,, is the last component of z. Prove that if g(x,v9)) is convex
inz for all j =1,..., N, then f is convex.

Since max{0, z} is an increasing convex function in z, the term max{0, g(z,v")) — z,,} is a
composition of an increasing function, with a convex function, which is convex. These terms
are added together with nonnegative weights, which preserves convexity.

Exercise 3 (Nondifferentiable functions.) (10 pts.) Consider f(z) = max{—=z,z*}.
Give an explicit expression for the subdifferential of f at x = 0. Use an optimality con-
dition to establish that x = 0 is optimal for f.



The subdifferential is [—1,0]. Since the function is convex, a point is optimal if and only if
zero is in the subdifferential at the point. This is obviously the case here.

Exercise 4 (Convex set.) (10 pts.) Show that the following set is a convex set:

{zeR" : ||z —aPy <cTz 40D foralli =1,...,m}.

The function fi(x) = ||z —a? ||y — ¢ 2 — b is convex because every norm is convex and here
it is simply composed with an affine function, which preserves convexity. The subtraction
of an affine function further preserves convexity. Since sublevel sets of convex functions are
convex sets, {z : fi(z) <0} is a convex set. The conclusion then follows from realizing that
the set in question is simply an intersection of such sets, which then must be convex.

Exercise 5 (Local optimality.) Give an example of an optimization problem on R with
a locally optimal solution that is not a globally optimal solution in the following two cases.
Give no picture. Write explicit formula.

1. (5 pts.) The objective function is convex.

For example objective is f(z) = = and the feasible set is [—1,0] U [1,2]. The point
x =1 is locally optimal, but not globally optimal.

2. (10 pts.) The feasible set is convex.

For example objective is f(x) = x everywhere except for z = 0 where f(x) = —1 and
the feasible set is the whole real line. The point x = 0 is locally optimal, but not
globally optimal.



