EE 127 / EE 227AT

Solution Final Spring 2016

Please write your answers on these sheets, use the back sides if needed. Show your work.
You can use a fact from the slides/book without having to prove it unless you are specifically
asked to do so. Be organized and use readable handwriting. There is a page for scratch work
at the end.

Exercise 1 (Cholesky decomposition.) (10 pts) Suppose that the square matrix B has
the QR~factorization B = QQR, where () is orthogonal and R is upper triangular with positive
diagonal terms, and another matrix A = B B. Describe the Cholesky method for solving
the system of equations Ax = b for some vector b using this information.

A=B"B=R"Q"QR =R"R. Thus Az = R"Rx = b. Let z = Rx. First, solve Rz = b,
which is quick as R is triangular. This gives z. Second, solve Rx = z, which gives z. This
is again quick as R is triangular.

Exercise 2 (Ridge regression.) (10 pts) Ridge regression involves solving optimization
problems of the form min ||Az — b||2 + A||z||3, where X is a positive regularization parameter
and A and b are given. Write this problem as an equivalent least-squares problem (without
regularization) such that standard least-squares methods can be used.

It is clear that || Az — b||3 + \|z||? = ||Cz — d||3, where C' = (A;v/AI) and d = (b;0).

Exercise 3 (Risk minimization.) Let ¢; € R” be a vector of costs faced in a future
scenario j, with j = 1,...,m, and x € R" be a decision vector to be optimized subject to the
constraints x > 0 and ), z; = 1. Since we are unsure about the future scenario, we adopt
a risk-based formulation where we aim to minimize the a-superquantile. This leads to the
problem
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min f(z) =& + T—am ; max{0, chx — ¢}, subject to the constraints,

where T = (£, ) € R". This problem can be reformulated as a linear program with n+m-+1
variables, 2m + n inequality constraints and one equality constraint. There are algorithms
that can solve this linear program in computational effort that is proportional to (m + n)3®.
In this question we contrast this effort with that of the subgradient method.



The subgradient method for this problem is as follows. Starting from an initial point zy €
R™*1 the function f is minimized directly without reformulation using the recursion Zj,, =
Pz —sgVf(Zg)), k=0,1,2, ..., where Vf(Zy) is a subgradient of f at Zy, s is a step size,
and P(-) is the projection onto the feasible set.

1. (10 pts) Since one can use a chain rule to obtain a subgradient of f at Zy, it is sufficient
to work out a formula for the subgradient of a function g;(z) = max{0,¢;z — £} at
T = (&, ). Write such a formula.

If ch:Uk — & > 0, then a subgradient is (—1, ch)T, otherwise it is zero.

2. (5 pts) Suppose n is relatively small, but m is huge. Would you prefer the linear pro-
gramming approach described above or the subgradient method for solving the above
problem. Explain why.

For large m, the LP approach will be extremely costly. The subgradient approach
might take many iterations, but each iteration is very cheap, roughly of order m. 1
would prefer the subgradient method (in reality accelerated versions of this algorithm).

Exercise 4 (Steepest descent method.) (10 pts) It is known that iterations of the steep-
est descent method generate a sequence of iterates x that are gradually closer to optimality
with progress bounded by the expression

f(@ry1) —p" < e(f(xr) —p7),

where f is the (convex) function being minimized, p* its minimum value, and ¢ € (0,1) is a
constant. Derive a formula in terms of the initial error ¢y = f(x¢) — p*, with zo being the
initial solution, for how many iterations it takes this method to reach an z with f(z)—p* <e,
where € > 0.

After k iterations, we by recursion that f(zp) — p* < *(f(x¢) — p*). Thus, we needed
c*(f (o) —p*) <e€or
k> (logc) ' log <
€o

Exercise 5 (Barrier method.) We consider the original problem min fo(x) subject to
fi(r) < 0,4 = 1,...,m, and the corresponding logarithmic barrier problem min fo(x) —
(1/t) >0 log(—fi(x)), where t > 0.

1. (10 pts) Write the KKT conditions for the original problem.



Primal feasibility: fi(z) < 0 for all i

Dual feasbility: A\; > 0 for all ¢
Complementary slackness: \; f;(z) = 0 for all 4
Gradient: V fo(z) + >, NV fi(z) =0

2. (5 pts) Write the KKT conditions for the barrier problem.
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V fo(x) +; 7w V@
3. (5 pts) Given t > 0, let z*(t) be an optimal solution of the barrier problem and set
() = —1/(tfi(z*(t))), i = 1,...,m. Suppose that fo, f1,..., fm are convex. Show

that z*(¢) is a minimum solution of the Lagrangian of the original problem when the
multipliers \; are set to \!(¢) for all i =1,...,m.

Since x*(t) is an optimal solution of the barrier problem,
V(" (1) + D NV i (1) = 0.
In view of convexity of the Lagrangian, this implies the result.

Exercise 6 (Support vector machine.) (10 pts) A Support Vector Machine approach to
classification needs to consider the problem

1 & . 1 «
min — ; B(yig(wi) w) = — ; max{0, 1 — yig(z;) "w}

where {z;,y;}, is given data and E(a) = max{0,1 — a} is the hinge loss. Write this prob-
lem as a linear program.

m
1
min — g €e;
w,e M
i=1

subject to 1 — y;d(z;) ' w < e;, i=1,....m

eiZO, izl,...,m

Exercise 7 (Shape-Constrained Regression.) Suppose that we have some data {z;, y; }1",
with x;,1; € R. We would like to carry out least-squares regression on this data set, but
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need to ensure that the regression function is convex. We will achieve this using epi-splines.
First, we discretize a sufficiently large part of the first axis by the points mg, mq,...,my.
Second, on each segment (my_1, mg), we let the regression function be a second-order poly-
nomial of the form af + a¥x + akx?. The a coefficients are to be determined by the opti-
mization. Consequently, the regression function f,(z) is a one-dimensional function defined
on [mg, my], which is piecewise polynomial with coefficients determined by the various a-
coefficients. Least-squares regression aims to find such a regression function that has a small

error relative to the observed data.

1. (5 pts.) Write an objective function that expresses the least-squares criterion in this
case. You can assume that the regression function is continuous.

Let e; = y; — [af + afix; + afia?], where k; is such that x; € [my,_1,my,]. Then the
objective becomes > " | 2.

2. (10 pts.) Write a set of constraints that ensures that the regression function is convex.
Make sure you include constraints that enforce continuity of the regression function.

Continuity: af + a¥my + akm} = af™ + a¥™my, + ab™m3 for k=1,.., N — 1.

Convexity at mesh points: a¥ + 2akmy, < a4 2a5™my for k=1,..., N — 1.

Convexity in segments: a§ > 0 for all k =1,..., N.

Exercise 8 (Control.) (5 pts.) We need to develop a control algorithm for a robot that
moves at constant speed v in a two-dimensional space. The robot’s motion is modeled as a
Dubin’s vehicle, i.e., @1 (t) = v cosx3(t), To(t) = vsinwxs(t), and @3(t) = u(t), where x1(t) and
x2(t) are the coordinates in the plane at time ¢ and x3(t) is the heading at time ¢. The control
input at time ¢ is u(t). Consider Euler’s method of solution of this differential equation with
time discretization step At so that the discretized version of the optimal control problem
will involve the state variables x;(kAt), for i =1,2,3 and £k =0,1,2, ..., N.

Using the state variables at the discretized points in time, write a set of constraints that en-
sures that the robot is never further away from a desired trajectory given by {(y1(t), y2(t)),t >
0} than the robot’s second coordinate at the same points in time. What type of constraints
will this be?

Let x(t) = (z1(t), z2(t)) and y(t) = (y1(t),y2(t)). Then, the constraints will be ||z(kAt) —
y(kAt)||2 < xo(kAt) for k= 0,1, ..., N, which are second-order cone constraints.

Exercise 9 (Positive definiteness.) (5 pts) Consider an n-by-n symmetric matrix with
smallest eigenvalue A, > n. Suppose that this matrix is augment with one row at the



bottom and one column to the right consisting exclusively of ones. The augmented matrix is
then of dimension (n + 1)-by-(n + 1). Recall that an m-by-m matrix of only ones has largest
eigenvalue of m. Prove that the augmented matrix is positive definite.

The Schur complement theorem establishes that it is sufficient to prove that A— B is positive
definite, where A is the original n-by-n matrix and B is an n-by-n matrix of ones. Since
y" (A—B)y=y"Ay —y" By > Anillyl|3 — nl|ly||3 > 0 by the Rayleigh quotient theorem for
nonzero ¥y, we have established to conclusion.



