
EE 127 / EE 227AT

Final Spring 2016

Please write your answers on these sheets, use the back sides if needed. Show your work.
You can use a fact from the slides/book without having to prove it unless you are specifically
asked to do so. Be organized and use readable handwriting. There is a page for scratch work
at the end.

Exercise 1 (Cholesky decomposition.) (10 pts) Suppose that the square matrix B has
the QR-factorization B = QR, where Q is orthogonal and R is upper triangular with positive
diagonal terms, and another matrix A = B⊤B. Describe the Cholesky method for solving
the system of equations Ax = b for some vector b using this information.
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Exercise 2 (Ridge regression.) (10 pts) Ridge regression involves solving optimization
problems of the form min ∥Ax− b∥22 + λ∥x∥22, where λ is a positive regularization parameter
and A and b are given. Write this problem as an equivalent least-squares problem (without
regularization) such that standard least-squares methods can be used.
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Exercise 3 (Risk minimization.) Let cj ∈ Rn be a vector of costs faced in a future
scenario j, with j = 1, ...,m, and x ∈ Rn be a decision vector to be optimized subject to the
constraints x ≥ 0 and

∑n
i=1 xi = 1. Since we are unsure about the future scenario, we adopt

a risk-based formulation where we aim to minimize the α-superquantile. This leads to the
problem

min f(x̄) = ξ +
1

1− α

1

m

m∑
j=1

max{0, c⊤j x− ξ}, subject to the constraints,

where x̄ = (ξ, x) ∈ Rn+1. This problem can be reformulated as a linear program with n+m+1
variables, 2m + n inequality constraints and one equality constraint. There are algorithms
that can solve this linear program in computational effort that is proportional to (m+n)3.5.
In this question we contrast this effort with that of the subgradient method.

The subgradient method for this problem is as follows. Starting from an initial point x̄0 ∈
Rn+1, the function f is minimized directly without reformulation using the recursion x̄k+1 =
P (x̄k − sk∇f(x̄k)), k = 0, 1, 2, ..., where ∇f(x̄k) is a subgradient of f at x̄k, sk is a step size,
and P (·) is the projection onto the feasible set.

1. (10 pts) Since one can use a chain rule to obtain a subgradient of f at x̄k, it is sufficient
to work out a formula for the subgradient of a function gj(x̄) = max{0, c⊤j x − ξ} at
x̄k = (ξk, xk). Write such a formula.

2. (5 pts) Suppose n is relatively small, but m is huge. Would you prefer the linear pro-
gramming approach described above or the subgradient method for solving the above
problem. Explain why.
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Exercise 4 (Steepest descent method.) (10 pts) It is known that iterations of the steep-
est descent method generate a sequence of iterates xk that are gradually closer to optimality
with progress bounded by the expression

f(xk+1)− p∗ ≤ c(f(xk)− p∗),

where f is the (convex) function being minimized, p∗ its minimum value, and c ∈ (0, 1) is a
constant. Derive a formula in terms of the initial error ϵ0 = f(x0) − p∗, with x0 being the
initial solution, for how many iterations it takes this method to reach an x with f(x)−p∗ ≤ ϵ,
where ϵ > 0.

4



Exercise 5 (Barrier method.) We consider the original problem min f0(x) subject to
fi(x) ≤ 0, i = 1, ...,m, and the corresponding logarithmic barrier problem min f0(x) −
(1/t)

∑m
i=1 log(−fi(x)), where t > 0.

1. (10 pts) Write the KKT conditions for the original problem.

2. (5 pts) Write the KKT conditions for the barrier problem.
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3. (5 pts) Given t > 0, let x∗(t) be an optimal solution of the barrier problem and set
λ∗
i (t) = −1/(tfi(x

∗(t))), i = 1, ...,m. Suppose that f0, f1, ..., fm are convex. Show
that x∗(t) is a minimum solution of the Lagrangian of the original problem when the
multipliers λi are set to λ∗

i (t) for all i = 1, ...,m.
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Exercise 6 (Support vector machine.) (10 pts) A Support Vector Machine approach to
classification needs to consider the problem

min
w

1

m

m∑
i=1

Ê(yiϕ(xi)
⊤w) =

1

m

m∑
i=1

max{0, 1− yiϕ(xi)
⊤w}

where {xi, yi}mi=1 is given data and Ê(α) = max{0, 1 − α} is the hinge loss. Write this
problem as a linear program.
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Exercise 7 (Shape-Constrained Regression.) Suppose that we have some data {xi, yi}mi=1,
with xi, yi ∈ R. We would like to carry out least-squares regression on this data set, but
need to ensure that the regression function is convex. We will achieve this using epi-splines.
First, we discretize a sufficiently large part of the first axis by the points m0,m1, ...,mN .
Second, on each segment (mk−1,mk), we let the regression function be a second-order poly-
nomial of the form ak0 + ak1x + ak2x

2. The a coefficients are to be determined by the opti-
mization. Consequently, the regression function fa(x) is a one-dimensional function defined
on [m0,mN ], which is piecewise polynomial with coefficients determined by the various a-
coefficients. Least-squares regression aims to find such a regression function that has a small
error relative to the observed data.

1. (5 pts.) Write an objective function that expresses the least-squares criterion in this
case. You can assume that the regression function is continuous.

2. (10 pts.) Write a set of constraints that ensures that the regression function is convex.
Make sure you include constraints that enforce continuity of the regression function.
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Exercise 8 (Control.) (5 pts.) We need to develop a control algorithm for a robot that
moves at constant speed v in a two-dimensional space. The robot’s motion is modeled as a
Dubin’s vehicle, i.e., ẋ1(t) = v cosx3(t), ẋ2(t) = v sin x3(t), and ẋ3(t) = u(t), where x1(t) and
x2(t) are the coordinates in the plane at time t and x3(t) is the heading at time t. The control
input at time t is u(t). Consider Euler’s method of solution of this differential equation with
time discretization step ∆t so that the discretized version of the optimal control problem
will involve the state variables xi(k∆t), for i = 1, 2, 3 and k = 0, 1, 2, ..., N .

Using the state variables at the discretized points in time, write a set of constraints that en-
sures that the robot is never further away from a desired trajectory given by {(y1(t), y2(t)), t ≥
0} than the robot’s second coordinate at the same points in time. What type of constraints
will this be?

9



Exercise 9 (Positive definiteness.) (5 pts) Consider an n-by-n symmetric matrix with
smallest eigenvalue λmin > n. Suppose that this matrix is augment with one row at the
bottom and one column to the right consisting exclusively of ones. The augmented matrix is
then of dimension (n+1)-by-(n+1). Recall that an m-by-m matrix of only ones has largest
eigenvalue of m. Prove that the augmented matrix is positive definite.
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(blank)
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