Name:	Student ID No:
-------	----------------

UNIVERSITY OF CALIFORNIA

College of Engineering Department of Electrical Engineering and Computer Sciences

Professor Zeitouni Spring 1998

EECS 126 — MIDTERM #1

February 12, 1998, Thursday 8:10-9:10 a.m.

[20 pts.] 1. Given
$$P(A) = \alpha$$
, $P(B) = \beta$
$$P(A \cup B) = \gamma$$
, find $P(A|B^C)$.

[50 pts.] 2. Consider a communication channel as follows:

where
$$p(\text{output} = 1|\text{input} = 1) = 0.9$$

 $p(\text{output} = 1|\text{input} = 0) = 0.05$

The channel is fed with 5 independent Bermoulli bits, P(bit = 1) = 0.2.

Compute:

- a) The probability that the output sequence does not equal the input sequence. (30 pts.)
- **b**) The probability that the output sequence differs from the input sequence by more than one bit. (20 pts.)
- [30 pts.] 3. Consider the channel in Problem 2, which is fed by a sequence of independent Bermoulli (0.5) bits.

Find the probability that the first mismatch between the input and output sequences occurs at the fifth bit.