EE126: Probability and Random Processes

Midterm - April 1
Lecturer: Jean C. Walrand
SOLUTIONS
GSI: Baosen Zhang
Formulas: Given the short attention span induced by twitter and the like, we thought you might appreciate not having to remember the following formulas. After all, they are on Wikipedia.

$$
\begin{aligned}
& \mathbf{X}=N(\mu, \Sigma) \Leftrightarrow f_{\mathbf{X}}(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right\} \\
& L[\mathbf{X} \mid \mathbf{Y}]=E(\mathbf{X})+\Sigma_{\mathbf{X Y}} \Sigma_{\mathbf{Y}}^{-1}(\mathbf{Y}-E(\mathbf{Y})) \\
& \operatorname{cov}(\mathbf{A X}, \mathbf{B Y})=\mathbf{A} \operatorname{cov}(\mathbf{X}, \mathbf{Y}) \mathbf{B}^{T} . \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]} \\
& P(V>1.64)=0.05 \text { when } V=N(0,1) .
\end{aligned}
$$

Problem 1. (Multiple Choice 20\%)

- If X, Y, Z are pairwise independent, then $X Y$ and Z are (circle the correct answer(s)): uncorrelated, independent, (possibly neither).
- Let X, Y, Z be general random variables. Then (circle the identities that always hold):

$$
\begin{aligned}
& E[L[X \mid Y] \mid Y]=E[X \mid Y] \\
& (E[L[X \mid Y] \mid Y]=L[X \mid Y]) \\
& (L[L[X \mid Y, Z] \mid Y]=L[X \mid Y]) \\
& L[X Y \mid Y]=Y L[X \mid Y]
\end{aligned}
$$

- Jointly Gaussian random variables that are pairwise independent are also mutually independent (circle the correct answer): (True), False.
- The maximum of two independent exponentially distributed random variables is exponentially distributed (circle the correct answer): True, (False).
- Let X, Y be jointly Gaussian, zero mean, and unit variance random variables. Then (circle the statements that are certainly true):

$$
(\operatorname{cov}(X, Y) \leq 1) ; \operatorname{cov}(X, Y) \leq 0.5 ; P(X>Y)=1 / 2 ;(L[X \mid Y]=E[X \mid Y] .)
$$

Problem 2. (Quick Calculations 20\%) Let X, Y, Z be i.i.d. $U[0,1]$. Calculate
(a) $E\left[(X+Y)^{2} \mid X\right]=E\left[X^{2}+2 X Y+Y^{2} \mid X\right]=X^{2}+2 X E(Y)+E\left(Y^{2}\right)=X^{2}+X+1 / 3$
(b) $E[(X+Y)(Y+Z) \mid Y]=E\left[X Y+Y^{2}+X Z+Y Z \mid Y\right]$

$$
=Y / 2+Y^{2}+1 / 4+Y / 2=Y^{2}+Y+1 / 4
$$

(c) $L[X+Y \mid X+Y+Z]=(2 / 3)(X+Y+Z)$, by symmetry.
(d) $L[(X+Y) Y \mid Y]=L[X Y \mid Y]+L\left[Y^{2} \mid Y\right]$.

Now, $L[X Y \mid Y]=E(X) Y=Y / 2$. Indeed, $X Y-Y / 2 \perp Y$. Also,

$$
\begin{aligned}
& L\left[Y^{2} \mid Y\right]=E\left(Y^{2}\right)+\frac{\operatorname{cov}\left(Y^{2}, Y\right)}{\operatorname{var}(Y)}(Y-E(Y))=1 / 3+\frac{E\left(Y^{3}\right)-E\left(Y^{2}\right) E(Y)}{E\left(Y^{2}\right)-E(Y)^{2}}(Y-1 / 2) \\
& \quad=1 / 3+\frac{1 / 4-1 / 6}{1 / 3-1 / 4}(Y-1 / 2)=1 / 3+Y-1 / 2=Y-1 / 6
\end{aligned}
$$

Hence, $L[(X+Y) Y \mid Y]=Y / 2+Y-1 / 6=3 Y / 2-1 / 6$.
(e) $E[\cos (X+Y) \mid Y]=\int_{0}^{1} \cos (x+Y) d x=\sin (1+Y)-\sin (Y)$.

Problem 3. (More Quick Calculations $\mathbf{2 0 \%}$) Let X, Y, Z be i.i.d. $N(0,1)$. Calculate: [Hint: First calculate $\operatorname{cov}(X+Y, X-Y)$.] $\operatorname{cov}(X+Y, X-Y)=0 \Rightarrow X+Y \Perp X-Y$.
(a) $E[\sin (X+Y) \mid X-Y]=E(\sin (X+Y))$, since $X+Y \Perp X-Y$ $=0$, since the distribution of $X+Y$ is symmetric around 0 .
(b) $E[2 X+Y \mid X-Y]=E[X \mid X-Y]$ since $X+Y \Perp X-Y$

$$
=(X-Y) / 2, \text { by symmetry. }
$$

(c) $E\left[(X+Y+Z)^{2} \mid X-Y\right]=E\left((X+Y+Z)^{2}\right)$ since $(X+Y, Z) \Perp X-Y$

$$
=\operatorname{var}(X+Y+Z)=3
$$

(d) $E[X+2 Y+3 Z \mid X+Z, Y+2 Z]$

$$
=[4,8]\left[\begin{array}{ll}
2 & 2 \\
2 & 5
\end{array}\right]^{-1}\left[\begin{array}{c}
X+Z \\
Y+2 Z
\end{array}\right]=[4,8] \frac{1}{6}\left[\begin{array}{cc}
5 & -2 \\
-2 & 2
\end{array}\right]\left[\begin{array}{c}
X+Z \\
Y+2 Z
\end{array}\right]=[2 / 3,4 / 3]\left[\begin{array}{c}
X+Z \\
Y+2 Z
\end{array}\right]
$$

Problem 4. (20\%)
(a) Write the projection characterization of $E[X \mid Y]$.
(b) Use this property to show that if Z is independent of (X, Y), then $E[X g(Y) Z \mid Y]=$ $E[X \mid Y] g(Y) E(Z)$.
(a) The projection characterization is that $E[X \mid Y]$ is the function of Y with the property that $X-E[X \mid Y] \perp h(Y), \forall h($.$) , i.e., E((X-E[X \mid Y]) h(Y))=0, \forall h($.$) .$
(b) Since $V:=E[X \mid Y] g(Y) E(Z)$ is a function of Y, to show that $V=E[X g(Y) Z \mid Y]$, it suffices to check that $E((X g(Y) Z-V) h(Y))=0, \forall h($.$) . Now,$

$$
\begin{aligned}
& E((X g(Y) Z h(Y))=E(X g(Y) h(Y)) E(Z) \text {, since } Z \Perp(X, Y) \\
& \text { and } \\
& E(V h(Y))=E(E[X \mid Y] g(Y) E(Z) h(Y))=E(Z) E(g(Y) h(Y) E[X \mid Y]) \\
& \quad=E(Z) E(E[X g(Y) h(Y) \mid Y])=E(Z) E(X g(Y) h(Y))
\end{aligned}
$$

where the last identity comes from the fact that $E(E[V \mid W])=E(V)$ for any random variables V, W.

Problem 5. $(\mathbf{2 0 \%})$ When $X=0, \mathbf{Y}=N(0, \Sigma)$ and when $X=1, \mathbf{Y}=N(\mu, \Sigma)$ where

$$
\mu=\left[\begin{array}{l}
1 \\
4
\end{array}\right] \text { and } \Sigma=\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right]^{2}=\left[\begin{array}{cc}
2 & -3 \\
-3 & 5
\end{array}\right]
$$

(a) Find $M L E[X \mid \mathbf{Y}]$ and express it in the form $M L E[X \mid \mathbf{Y}]=1\left\{\mathbf{a}^{T} \mathbf{Y} \geq \alpha\right.$.
(b) Find \hat{X} based on Y and taking values in $\{0,1\}$ that maximizes $P[\hat{X}=1 \mid X=1]$ subject to $P[\hat{X}=1 \mid X=0] \leq 0.05$.

First we calculate

$$
l(\mathbf{y})=\log \left(\frac{f_{1}(\mathbf{y})}{f_{0}(\mathbf{y})}\right)
$$

We have

$$
2 . l(\mathbf{y})=\mathbf{y}^{T} \Sigma^{-1} \mathbf{y}-(\mathbf{y}-\mu)^{T} \Sigma^{-1}(\mathbf{y}-\mu)=2 \mu^{T} \Sigma^{-1} \mathbf{y}-\mu^{T} \Sigma^{-1} \mu .
$$

(a) $M L E[X \mid Y]=1\{l(\mathbf{Y}) \geq 0\}=1\left\{2 \mu^{T} \Sigma^{-1} \mathbf{Y} \geq \mu^{T} \Sigma^{-1} \mu=1\left\{\mathbf{a}^{T} \mathbf{Y} \geq \alpha\right\}\right.$ where $\mathbf{a}^{T}=$ $2 \mu^{T} \Sigma^{-1}=[34,22]$ and $\alpha=\mu^{T} \Sigma^{-1} \mu=61$.
(b) The solution is $\hat{X}=1\left\{l(\mathbf{y})>l_{0}\right\}$ where l_{0} is such that $P\left[l(\mathbf{Y})>l_{0} \mid X=0\right]=0.05$. Thus,

$$
\hat{X}=1\left\{\mathbf{a}^{T} \mathbf{Y}>c\right\}
$$

where c is such that $P\left[\mathbf{a}^{T} \mathbf{Y}>c \mid X=0\right]=0.05$. Now, when $X=0, Z:=\mathbf{a}^{T} \mathbf{Y}=N\left(0, \sigma^{2}\right)$ where

$$
\sigma^{2}=\mathbf{a}^{T} \Sigma \mathbf{a}=4 \mu^{T} \Sigma^{-1} \Sigma \Sigma^{-1} \mu=4 \mu^{T} \Sigma^{-1} \mu=244 .
$$

Thus, $P(Z>c)=P(V>c / \sqrt{ } 244)$ where $V=N(0,1)$. Thus, $P(Z>1.64 \sqrt{244})=P(V>$ $1.64)=0.05$. Hence,

$$
\hat{X}=1\{[34,22] \mathbf{Y}>1.64 \sqrt{244}\}
$$

