EE126: Probability and Random Processes

Formulas: Given the short attention span induced by twitter and the like, we thought you might appreciate not having to remember the following formulas. After all, they are on Wikipedia.

$$
\begin{aligned}
& \mathbf{X}=N(\mu, \Sigma) \Leftrightarrow f_{\mathbf{X}}(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right\} \\
& L[\mathbf{X} \mid \mathbf{Y}]=E(\mathbf{X})+\Sigma_{\mathbf{X Y}} \Sigma_{\mathbf{Y}}^{-1}(\mathbf{Y}-E(\mathbf{Y})) \\
& \operatorname{cov}(\mathbf{A X}, \mathbf{B Y})=\mathbf{A} \operatorname{cov}(\mathbf{X}, \mathbf{Y}) \mathbf{B}^{T} . \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]} \\
& P(V>1.64)=0.05 \text { when } V=N(0,1) .
\end{aligned}
$$

Problem 1. (Multiple Choice 20\%)

- If X, Y, Z are pairwise independent, then $X Y$ and Z are (circle the correct answer(s)): uncorrelated, independent, possibly neither.
- Let X, Y, Z be general random variables. Then (circle the identities that always hold):

$$
\begin{aligned}
& E[L[X \mid Y] \mid Y]=E[X \mid Y] \\
& E[L[X \mid Y] \mid Y]=L[X \mid Y] \\
& L[L[X \mid Y, Z] \mid Y]=L[X \mid Y] \\
& L[X Y \mid Y]=Y L[X \mid Y] .
\end{aligned}
$$

- Jointly Gaussian random variables that are pairwise independent are also mutually independent (circle the correct answer):
True, False.
- The maximum of two independent exponentially distributed random variables is exponentially distributed (circle the correct answer): True, False.
- Let X, Y be jointly Gaussian, zero mean, and unit variance random variables. Then (circle the statements that are certainly true):

$$
\operatorname{cov}(X, Y) \leq 1 ; \operatorname{cov}(X, Y) \leq 0.5 ; P(X>Y)=1 / 2 ; L[X \mid Y]=E[X \mid Y]
$$

Problem 2. (Quick Calculations 20\%) Let X, Y, Z be i.i.d. $U[0,1]$. Calculate
(a) $E\left[(X+Y)^{2} \mid X\right]$
(b) $E[(X+Y)(Y+Z) \mid Y]$
(c) $L[X+Y \mid X+Y+Z]$
(d) $L[(X+Y) Y \mid Y]$
(e) $E[\cos (X+Y) \mid Y]$

Problem 3. (More Quick Calculations 20\%) Let X, Y, Z be i.i.d. $N(0,1)$. Calculate: [Hint: First calculate $\operatorname{cov}(X+Y, X-Y)$.]
(b) $E[2 X+Y \mid X-Y]$
(c) $E\left[(X+Y+Z)^{2} \mid X-Y\right]$
(d) $E[X+2 Y+3 Z \mid X+Z, Y+2 Z]$

Problem 4. (20%)
(a) Write the projection characterization of $E[X \mid Y]$.
(b) Use this property to show that if Z is independent of (X, Y), then $E[X g(Y) Z \mid Y]=$ $E[X \mid Y] g(Y) E(Z)$.

Problem 5. $(\mathbf{2 0 \%})$ When $X=0, \mathbf{Y}=N(0, \Sigma)$ and when $X=1, \mathbf{Y}=N(\mu, \Sigma)$ where

$$
\mu=\left[\begin{array}{l}
1 \\
4
\end{array}\right] \text { and } \Sigma=\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right]^{2}=\left[\begin{array}{cc}
2 & -3 \\
-3 & 5
\end{array}\right]
$$

(a) Find $\operatorname{MLE}[X \mid \mathbf{Y}]$ and express it in the form $M L E[X \mid \mathbf{Y}]=1\left\{\mathbf{a}^{T} \mathbf{Y} \geq \alpha\right.$.
(b) Find \hat{X} based on Y and taking values in $\{0,1\}$ that maximizes $P[\hat{X}=1 \mid X=1]$ subject to $P[\hat{X}=1 \mid X=0] \leq 0.05$.

