| EE126: Probability and Random Processes | SP'10 |  |
| :---: | :---: | ---: |
| Midterm - February 18 |  |  |
| Lecturer: Jean C. Walrand | SOLUTIONS | GSI: Baosen Zhang |

## Problem 1. (Multiple Choice 20\%)

- Assume $P(A)=0.2, P(B)=0.6, P(A \cup B)=0.5$. Then $P[A \mid B]=\ldots$
(Circle one ): 0, 0.1, 0.2, 0.3, 0.4, (0.5), 0.6, 1.
$P(A \cup B)=P(A)+P(B)-P(A \cap B) \Rightarrow P(A \cap B)=0.3 \Rightarrow P[A \mid B]=0.3 / 0.6=0.5$.
- Assume that $X=n$ with probability $\alpha 3^{-n}$ for $n \geq 1$. Then $E(X)=\ldots$
(Circle one): $0.25,0.5,1,(1.5), 2,2.5,3,4,5,6$, depends on $\alpha$.
Since $\sum_{n=1}^{\infty} 3^{-n}=1 / 2, \alpha=2$. Then $E(X)=2 \sum n 3^{-n}=2 a(1-a)^{-2}$ with $a=1 / 3$. So $E(X)=1.5$.
- Assume that $\Omega=[0,1], \mathcal{F}=\{\emptyset,[0,0.3],(0.3,1],[0,1]\}$ and $P([0,0.3])=0.4$. Which of the following functions of $\omega$ are random variables? (Circle the correct answers): $X(\omega)=1\{\omega \leq 0.4\},(X(\omega)=1),(X(\omega)=2+3 \times 1\{\omega \leq 0.3\}), X(\omega)=1\{\omega \leq 0.5\}$. For $X$ to be a $R V$, we need $\{\omega \mid X(\omega) \leq x\} \in \mathcal{F}, \forall x$.
- Assume that $X \geq 0, E(X)=4$, and $\operatorname{var}(X)=0.3$. Circle the statements that are certainly true:
$(P(X>10) \leq 0.4),(P(X>10) \leq 0.5),(P(X>10) \leq 0.6), P(|X-4|>1) \leq 0.2$, $(P(|X-4|>2) \leq 0.075), P(|X-1|>3) \leq 0.2$.
We use Chebyshev's and Markov's inequalities.
- Assume that $X$ is exponentially distributed with rate 2. Then (circle the true statements):
$E(X)=2,(E(X)=0.5),(P[X>2 \mid X>1]>P(X>2))$,
$P[X>1 \mid X>2]<P(X>1),(P[X>3 \mid X>1]=P(X>2))$.
We use the memoryless property and some obvious facts.
- Assume that $X$ is uniformly distributed in $[0,1]$. Then (circle the correct statements): $(E(\cos (X))=\sin (1)), E\left(X^{n}\right)=2 n,\left(E\left(X^{n}\right)=1 /(n+1)\right), \operatorname{var}(X)=1 / 4,(\operatorname{var}(X)=$ 1/12.)
This should be obvious. For instance $E(\cos (X))=\int_{0}^{1} \cos (x) d x=[\sin (x)]_{0}^{1}=\sin (1)$.
- Let $(X, Y)$ be uniformly picked in the triangle with vertices $(0,0),(0,1),(1,0)$. Circle the correct statements:
$X, Y$ are independent. $X, Y$ are positively correlated. $X, Y$ are uncorrelated. ( $X, Y$ are negatively correlated).
- Complete the following sentence: A random variable is a .... function of the outcome of a random experiment.

Problem 2. $\mathbf{( 2 0 \%}$ ) A random number generator of type $n$ selects a number uniformly in the set $\{1,2, \ldots, n\}$. You are given such a generator and you are told that its type is $n$ with probability $n 2^{-n-1}$ for $n \geq 1$. Let $X$ be the value that the random number generator selects. Given $X$, what is the probability that the type of the generator is $n$, for $n \geq 1$ ?

We use Bayes' rule. We find

$$
\begin{aligned}
P[\text { Type is } n \mid X=x] & =\frac{P[X=x \mid \text { Type is } n] P(\text { Type is } n)}{\sum_{m} P[X=x \mid \text { Type is } m] P(\text { Type is } m)} \\
& =\frac{(1 / n) 1\{x \leq n\} n 2^{-n-1}}{\sum_{m}(1 / m) 1\{x \leq m\} m 2^{-m-1}} \\
& =\frac{1\{x \leq n\} 2^{-n-1}}{\sum_{m \geq x} 2^{-m-1}}=2^{x-n-1} 1\{x \leq n\} .
\end{aligned}
$$

In other words,

$$
P[\text { Type is } x+n \mid X=x]=\frac{1}{2^{n+1},} n=0,1, \ldots
$$

Problem 3. (20\%) The point $(X, Y)$ is picked uniformly in the triangle with vertices $(0,0),(0,1),(1,1)$. Calculate $\operatorname{cov}(X, Y)$, the covariance of $X$ and $Y$. Recall that $\operatorname{cov}(X, Y)=$ $E(X Y)-E(X) E(Y)$.

First, we calculate $E(X)$. We find

$$
\begin{aligned}
E(X) & =\iint x f(x, y) d x d y=\int_{0}^{1} \int_{0}^{x} x 2 d x d y \\
& =\int_{0}^{1} 2 x^{2} d x=\frac{2}{3}
\end{aligned}
$$

Second, we calculate $E(Y)$. We find

$$
\begin{aligned}
E(Y) & =\iint y f(x, y) d x d y=\int_{0}^{1} \int_{0}^{x} y 2 d x d y \\
& =\int_{0}^{1} x^{2} d x=\frac{1}{3}
\end{aligned}
$$

Third, we calculate $E(X Y)$. We find

$$
\begin{aligned}
E(X Y) & =\iint x y f(x, y) d x d y=\int_{0}^{1} \int_{0}^{x} x y 2 d x d y \\
& =\int_{0}^{1} x^{3} d x=\frac{1}{4}
\end{aligned}
$$

Finally, we put the pieces together and we get

$$
\operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{1}{4}-\frac{2}{3} \times \frac{1}{3}=\frac{1}{36}
$$

Note that $X$ and $Y$ are positively correlated, as we expected.

Problem 4. (20\%) Let $X$ be the random variable selected as follows: with probability 0.2 , $X=0.8$; with probability $0.3, X=1.4$; with probability $0.5, X$ is picked uniformly in $[0,2]$. (a) Give the pdf $f(x)$ of $X$; (b) Give the cpdf $F(x)$ of $X$; (c) Calculate $E(X)$; (d) Calculate $\operatorname{var}(X)$.
(a)

$$
f(x)=0.25 \times 1\{0 \leq x \leq 2\}+0.2 \delta(x-0.8)+0.3 \delta(x-1.4)
$$

(b)

$$
F(x)=\left\{\begin{array}{l}
0, \text { if } x \leq 0 \\
0.25 x, \text { if } 0<x<0.8 \\
0.25 x+0.2, \text { if } 0.8 \leq x<1.4 \\
0.25 x+0.5, \text { if } 1.4 \leq x \leq 2 \\
1, \text { if } x \geq 2
\end{array}\right.
$$

(c)
$E(X)=\int x f(x) d x=\int_{0}^{2} 0.25 x d x+0.2 \times 0.8+0.3 \times 1.4=0.5+0.16+0.42=1.08$.
(d) We first calculate $E\left(X^{2}\right)$. One finds

$$
\begin{aligned}
E\left(X^{2}\right) & =\int x^{2} f(x) d x=\int_{0}^{2} 0.25 x^{2} d x+0.2 \times(0.8)^{2}+0.3 \times(1.4)^{2} \\
& =0.25 \frac{2^{3}}{3}+0.2 \times 0.64+0.3 \times 1.96=0.667+0.128+0.588=1.383
\end{aligned}
$$

Finally, we find

$$
\operatorname{var}(X)=E\left(X^{2}\right)-E(X)^{2}=1.383-(1.08)^{2}=1.383-1.166 \approx 0.117
$$

Problem 5. $(\mathbf{1 0 \%})$ Let $F(x)$ be the cpdf of a random variable $X$. Prove that $F(x)$ is right-continous.

Let $x_{n} \downarrow x$. Then $\left(-\infty, x_{n}\right] \downarrow(-\infty, x]$. Consequently,

$$
F\left(x_{n}\right)=P\left(\left(-\infty, x_{n}\right]\right) \downarrow P((-\infty, x])=F(x) .
$$

Problem 6. (10\%) For $n \geq 1$, let $X_{n}(\omega)=1\left\{\omega \in A_{n}\right\}$ where the events $A_{n}$ are such that $P\left(A_{n}\right)=1 /\left(4 n^{2}\right)$. Show that $X:=\sum_{n=1}^{\infty} X_{n}$ is finite with probability 1.

Note that $\sum_{n} P\left(A_{n}\right)<\infty$. Hence, $P\left(A_{n}\right.$, i.o. $)=0$. This means that, with probability one, $\omega$ belongs to only finitely many $A_{n}$ 's. Thus, with probability one, only finitely many $X_{n}$ 's are nonzero. Thus, with probability one, $X$ is a sum of only finitely many nonzero terms and is therefore finite.

