EE126: Probability and Random Processes	SP'10
Midterm - February 18	
Lecturer: Jean C. Walrand	GSI: Baosen Zhang

Problem 1. (Multiple Choice 20\%)

- Assume $P(A)=0.2, P(B)=0.6, P(A \cup B)=0.5$. Then $P[A \mid B]=\ldots$.
(Circle one): 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1 .
- Assume that $X=n$ with probability $\alpha 3^{-n}$ for $n \geq 1$. Then $E(X)=\ldots$
(Circle one): $0.25,0.5,1,1.5,2,2.5,3,4,5,6$, depends on α
- Assume that $\Omega=[0,1], \mathcal{F}=\{\emptyset,[0,0.3],(0.3,1],[0,1]\}$ and $P([0,0.3])=0.4$. Which of the following functions of ω are random variables? (Circle the correct answers): $X(\omega)=$ $1\{\omega \leq 0.4\}, X(\omega)=1, X(\omega)=2+3 \times 1\{\omega \leq 0.3\}, X(\omega)=1\{\omega \leq 0.5\}$.
- Assume that $X \geq 0, E(X)=4$, and $\operatorname{var}(X)=0.3$. Circle the statements that are certainly true:
$P(X>10) \leq 0.4, P(X>10) \leq 0.5, P(X>10) \leq 0.6, P(|X-4|>1) \leq 0.2, P(|X-4|$ $>2) \leq 0.075, P(|X-1|>3) \leq 0.2$.
- Assume that X is exponentially distributed with rate 2 . Then (circle the true statements):
$E(X)=2, E(X)=0.5, P[X>2 \mid X>1]>P(X>2)$,
$P[X>1 \mid X>2]<P(X>1), P[X>3 \mid X>1]=P(X>2)$.
- Assume that X is uniformly distributed in $[0,1]$. Then (circle the correct statements): $E(\cos (X))=\sin (1), E\left(X^{n}\right)=2 n, E\left(X^{n}\right)=1 /(n+1), \operatorname{var}(X)=1 / 4, \operatorname{var}(X)=$ 1/12.

$$
\int^{1}
$$

- Let (X, Y) be uniformly picked in the triangle with vertices $(0,0),(0,1),(1,0)$. Circle the correct statements:
X, Y are independent. X, Y are positively correlated. X, Y are uncorrelated.
- Complete the following sentence: A random variable is a

Problem 2. $\mathbf{(2 0 \%}$) A random number generator of type n selects a number uniformly in the set $\{1,2, \ldots, n\}$. You are given such a generator and you are told that its type is n with probability $n 2^{-n-1}$ for $n \geq 1$. Let X be the value that the random number generator selects. Given X, what is the probability that the type of the generator is n, for $n \geq 1$?

Problem 3. (20\%) The point (X, Y) is picked uniformly in the triangle with vertices $(0,0),(0,1),(1,1)$. Calculate $\operatorname{cov}(X, Y)$, the covariance of X and Y. Recall that $\operatorname{cov}(X, Y)=$ $E(X Y)-E(X) E(Y)$.

Problem 4. $(\mathbf{2 0 \%})$ Let X be the random variable selected as follows: with probability 0.2 , $X=0.8$; with probability $0.3, X=1.4$; with probability $0.5, X$ is picked uniformly in $[0,2]$. (a) Give the pdf $f(x)$ of X; (b) Give the cpdf $F(x)$ of X; (c) Calculate $E(X)$; (d) Calculate $\operatorname{var}(X)$.

Problem 5. $(\mathbf{1 0 \%})$ Let $F(x)$ be the cpdf of a random variable X. Prove that $F(x)$ is right-continous.

Problem 6. (10\%) For $n \geq 1$, let $X_{n}(\omega)=1\left\{\omega \in A_{n}\right\}$ where the events A_{n} are such that $P\left(A_{n}\right)=1 /\left(4 n^{2}\right)$. Show that $X:=\sum_{n=1}^{\infty} X_{n}$ is finite with probability 1.

