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1. (15%)

For each of the following questions, choose the correct answer:

1. A random variable is defined as

• a function of a random variable;

• a cumulative probability distribution function;

• a (deterministic) function of the outcome of a random experiment;

• a set of possible values with their probabilities.

2. Two random variables X and Y are independent if and only if

• they are uncorrelated;

• the variance of their sum is the sum of their variances;

• E[X|Y ] = E(X);

• g(X) and h(Y ) are uncorrelated for all functions g(.) and h(.);

• none of the above.

3. Two random variables X and Y are jointly Gaussian if and only if

• each is Gaussian;

• they are independent and Gaussian;

• they are linear combinations of independent N(0, 1) random variables;

• their sum is Gaussian;

• their mean values and covariance matrix are given.

4. The Maximum A Posteriori estimate X̂ of X given Y is such that

• P (X̂ = X) is maximized over all the random variables X̂;

• X̂ = g(Y ) where g(y) is the value of x that maximizes P [Y = y|X = x];

• X̂ = g(Y ) where g(y) is the value of x that maximizes P [X = x|Y = y];

• X − X̂ ⊥ h(Y ) for all function h(·).
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5. Three events A, B,C are mutually independent if and only if

• P [A|B ∩ C] = P (A) and P (B ∩ C) = P (B)P (C);

• P (A ∩B ∩ C) = P (A)P (B)P (C);

• P [A ∩B|C] = P (C) and P [C|A ∩B] = P (A ∩B);

• None of the above.
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2. (20%)

Assume that X is Geometric(p), so that P (X = n) = (1 − p)n−1p for n ≥ 1. (Here, p ∈ (0, 1)
is given.) Assume also that Y1, Y2, . . . are independent and Poisson(λ), so that P (Yk = n) =
λne−λ/n! for n ≥ 0 where λ > 0 is given. Moreover, assume that {X,Y1, Y2, . . .} are mutually
independent. Define Z = Y1 + Y2 + · · ·+ YX .

a) Calculate E(Z);

b) Calculate var(Z);

c) Calculate E[X|Z].

For part (a), we use the fact that E[E[Z|X]] = E[Z]. So to begin, we need to calculate the
conditional expectation of Z given X. So, suppose that X = x. Then we have

E[Z|X = x] = E[Y1 + Y2 + . . . + YX |X = x]

= E

[
x∑

i=1

Yi

]

=
x∑

i=1

E[Yi]

=
x∑

i=1

λ

= xλ

where in the fourth line we used the fact that the expectation of a Poisson random variable is λ.
So from this, it is clear that

E[Z|X] = Xλ

Therefore, we get

E[Z] = E[E[Z|X]]
= E[Xλ]
= E[X]λ

=
λ

p

where in the fourth line we used that the expectation of a geometric random variable is 1
p .

For part (b), we will again use the fact that E[E[Z2|X]] = E[Z2], and combine that with the fact
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that we already know E[Z] to calculate var(Z). So, suppose that X = x. Then we have

E[Z2|X = x] = E[(Y1 + Y2 + . . . + YX)2|X = x]
= E[(Y1 + Y2 + . . . + Yx)2]

= E




x∑

i=1

Y 2
i +

∑

i<j

2YiYj




=
x∑

i=1

E[Y 2
i ] + 2

∑

i<j

E[YiYj ]

=
x∑

i=1

E[Y 2
i ] + 2

∑

i<j

E[Yi]E[Yj ]

= xE[Y 2
i ] + 2 · x(x− 1)

2
· E[Yi]E[Yj ]

= xE[Y 2
i ] + x(x− 1)E[Yi]2

= x(E[Y 2
i ]−E[Yi]2) + x2E[Yi]2

= x · var(Yi) + x2E[Yi]2

= xλ + x2λ2

where in the fifth line we used the fact that the Yi’s are independent, in the sixth line we used
the fact that they are identically distributed, in the seventh line we used the fact that they are
identically distributed, and in the last line we used the fact that the mean and variance of a
Poisson random variable is λ. So from this, it is clear that

E[Z2|X] = Xλ + X2λ2

Therefore, we get

E[Z2] = E[E[Z2|X]]
= E[Xλ + X2λ2]
= E[X]λ + E[X2]λ2

= E[X]λ + (var(X) + E[X]2)λ2

=
λ

p
+

(
1− p

p2
+

1
p2

)
λ2

=
λp + (2− p)λ2

p2

where in the fifth line we used the fact that the mean of a geometric random variable is 1
p and

the variance of a geometric random variable is 1−p
p2 . Therefore, we get

var(Z) = E[Z2]− E[Z]2

=
λp + (2− p)λ2

p2
− λ2

p2

=
λp + (1− p)λ2

p2
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For part (c), we note that given X = n the random variable Z is Poisson(nλ). Thus,

P [Z = z|X = n] =
(nλ)z

z!
e−nλ, z ≥ 0.

Hence,

P [X = n|Z = z] =
nze−nλ(1− p)n

∑∞
m=0 mze−mλ(1− p)m

,

so that

E[X|Z = z] =
∑∞

n=0 nz+1e−nλ(1− p)n

∑∞
m=0 mze−mλ(1− p)m

=
H(z + 1, α)

H(z, α)

where

H(z, α) =
∞∑

m=0

mzαm and α = e−λ(1− p).

Observe that
∂

∂α
H(z, α) =

∑
m

mz+1αm−1 = α−1H(z + 1, α).

Hence,

H(z + 1, α) = α
∂

∂α
H(z, α).

Since H(0, α) = (1− α)−1, we find successively

H(1, α) = α(1− α)−2,H(2, α) = 2α(1− α)−3, ...

so that
H(z, α) = z!αz(1− α)−z−1.

This allows to compute

E[X|Z = z] =
(z + 1)!αz+1(1− α)−z−2

z!αz(1− α)−z−1
=

(z + 1)α
1− α

with α = e−λ(1− p).

5



3. (15%)

Let (X,Y)T be N([1, 2, 3]T , Σ) where Σ =




4 2 1
2 2 1
1 1 1


.

a) Find the matrix A such that X −AY is independent of Y;
Hint: Cov(Y, X −AY ) might be helpful.

b) Calculate E[X|Y];

c) Show that, given Y, X = N(g(Y), σ2) and determine g(Y) and σ2.

For part (a), we follow the hint about looking at the covariance of Y and X − AY. First, let’s
consider the quantity X − AY. Since we are adding X to AY, we know that AY must be a
scalar (or a 1× 1 matrix), therefore A must be a 1× 2 matrix, and

X −AY = X − [
a1 a2

] [
Y1

Y2

]
= X − a1Y1 − a2Y2

From this, we also know that

E[X −AY] = E[X]− a1E[Y1]− a2E[Y2] = 1− 2a1 − 3a2

Also, we know that X−AY is Gaussian, since it is the sum of jointly Gaussian random variables,
and also that X−AY and Y are jointly Gaussian. From this, if we show that Cov(Y, X−AY) =
0, then we know that X −AY and Y are independent. So we get

Cov(Y, X −AY) = E[(Y − E[Y])(X −AY − E[X −AY])T ]

= E

[([
Y1

Y2

]
−

[
2
3

]) ([
X − a1Y1 − a2Y2

]− [
1− 2a1 − 3a2

])T
]

= E

[[
Y1 − 2
Y2 − 3

] [
(X − 1)− a1(Y1 − 2)− a2(Y2 − 3)

]]

= E

[[
(Y1 − 2)(X − 1)− a1(Y1 − 2)(Y1 − 2)− a2(Y1 − 2)(Y2 − 3)
(Y2 − 3)(X − 1)− a1(Y2 − 3)(Y1 − 2)− a2(Y2 − 3)(Y2 − 3)

]]

=
[

Cov(Y1, X)− a1Cov(Y1, Y1)− a2Cov(Y1, Y2)
Cov(Y2, X)− a1Cov(Y2, Y1)− a2Cov(Y2, Y2)

]

=
[

2− 2a1 − a2

1− a1 − a2

]

So we weant

2− 2a1 − a2 = 0
1− a1 − a2 = 0

From this we get
A =

[
a1 a2

]
=

[
1 0

]
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For part (b), we want the best possible estimate of X given that we know YT = (Y1, Y2). Since
X and Y are jointly Gaussian, then we know that this estimate is going to be a linear function
of Y, that is

E[X|Y] = E[X] + ΣX,YΣ−1
Y (Y −E[Y])

First, we know that

ΣY =
[

2 1
1 1

]

and so we get

Σ−1
Y =

[
1 −1

−1 2

]

We also get

ΣX,Y =
[

Cov(X, Y1) Cov(X, Y2)
]

=
[

2 1
]

Therefore, we get

E[X|Y] = E[X] + ΣX,YΣ−1
Y (Y − E[Y])

= 1 +
[

2 1
] [

1 −1
−1 2

] [
Y1 − 2
Y2 − 3

]

= 1 +
[

1 0
] [

Y1 − 2
Y2 − 3

]

= 1 + Y1 − 2
= Y1 − 1

For part (c), we already know what g(Y) is; it is E[X|Y] = Y1 − 1. We just need to figure out
what σ2 is; we calculate

σ2 = E[(X − E[X|Y])2|Y]

But, we know that X −E[X|Y] is independent of bfY ; therefore, we get

σ2 = E[(X −E[X|Y])2|Y]
= E[(X −E[X|Y])2]
= E[(X − 1 + Y1)2]
= E[(X − 1) + (Y1 − 2) + 2)2]
= V ar(X) + V ar(Y1) + 2Cov(X, Y1) + 2E[X − 1] + 2E[X − 2] + 4
= 4 + 2 + 4 + 0 + 0 + 4
= 14

Therefore, X = N(Y1 − 1, 14).
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4. (15%)

Let X and Y be independent random variables having joint pdf fXY (x, y). We would like to
compute the pdf of Z = XY .

1. Let W = X. Show that the joint pdf of Z and W can be written as

fZW (z, w) =
∣∣∣∣
1
w

∣∣∣∣ fXY (w,
z

w
)

Hint: Think of (Z, W ) as a function of (X, Y ).

2. Assume that X and Y are uniform U(0, 1). Use the previous question to compute the pdf
fZ(z) of Z.

1. We define the function h(·) as

h : R2 → R2

(z, w) 7→ h(x, y) = (xy, x)

First notice that h(·) is a 1-to-1 mapping.
Now we can use the formula for the density of a function of a random variable to compute
fZW (z, w).

fZW (z, w) =
1

|J(h−1(z, w))|fXY (h−1(z, w))

The Jacobian J(·) is given by

J(x, y) =
(

y x
1 0

)
= −x

By applying the formula, we get

fZW (z, w) =
1
|w|fXY (w, z/w)

2. X and Y being independent uniform random variables, their joint pdf is given by

fXY (x, y) =
{

1 if 0 ≤ x, y ≤ 1
0 otherwise

This gives that

fZW (z, w) =
{

1 if 0 < z ≤ w ≤ 1
0 otherwise

The marginal pdf of Z can be computed by integrating the joint pdf over all possible values
of w.

fZ(z) =
∫ 1

0
fZW (z, w)dw =

∫ 1

z

1
w

dw = ln(w)|1z = −ln(z) 0 < z ≤ 1

8



5. (10%)

Given that X = 0, the random variables Y1, . . . , Yn are i.i.d Poisson with parameter λ. If, in the
other hand X = 1, Y1, . . . , Yn are i.i.d Poisson with rate λ1 > λ0.
You observe Y1, . . . , Yn, and based on that observation, you would like to decide whether X = 0
or X = 1.
You can assume that Pr(X = 0) = Pr(X = 1) = 0.5.
What is your decision rule if you are interested in maximizing the probability P (X̂ = X|Y )?

Notice that we have several observations Yj , j = 1, . . . , n based upon which we would like to
detect X. Also, since we want to maximize the posterior probability P (X̂ = X|Y ), our detection
rule corresponds to the maximum a posteriori (MAP) rule. However, the events X = 0 and
X = 1 are equally likely, which simplifies the detection rule to the maximum likelihood (ML).
To compute the likelihood ratio, we need the conditional joint distributions of the observations
P (Y1 = y1, Y2 = y2, . . . , Yn = yn|X = 1) and P (Y1 = y1, Y2 = y2, . . . , Yn = yn|X = 0). But, given
X, the observations are independent. Hence P (Y1 = y1, Y2 = y2, . . . , Yn = yn|X = i) = P (Y1 =
y1|X = i)P (Y2 = y2|X = i) . . . P (Yn = yn|X = i). This gives

Λ(y1, . . . , yn) =
P (Y1 = y1, Y2 = y2, . . . , Yn = yn|X = 1)
P (Y1 = y1, Y2 = y2, . . . , Yn = yn|X = 0)

=
P (Y1 = y1|X = 1)P (Y2 = y2|X = 1) . . . P (Yn = yn|X = 1)
P (Y1 = y1|X = 0)P (Y2 = y2|X = 0) . . . P (Yn = yn|X = 0)

Also given X = i, the observations have the same distribution P (Yj = yj |X = i) = e−λi (λi)
yj

yj !
.

Putting all this together, we get

Λ(y1, . . . , yn) =
e−λ1 (λ1)y1

y1! . . . e−λ1 (λ1)yn

yn!

e−λ0
(λ0)y1

y1! . . . e−λ0
(λ0)yn

yn!

After some simplifications, we get

Λ(y1, . . . , yn) = e−n(λ1−λ0)

(
λ1

λ0

)∑n
j=1 yj

Λ(y1, . . . , yn) is to be compared to 1, and X̂ = 1 is Λ(y1, . . . , yn) ≥ 1 (X̂ = 0 otherwise). Note
that it is easier to work with the log-likelihood-ratio

l(y1, . . . , yn) = ln(Λ(y1, . . . , yn)) = −n(λ1 − λ0) + ln

(
λ1

λ0

) n∑

j=1

yj

X̂ = 1 if

l(y1, . . . , yn) ≥ 0 ⇔ 1
n

n∑

j=1

yj ≥ λ1 − λ0

ln
(

λ1
λ0

)

Note: here we see that we do not need to observe the individual yj ’s for the detection; only the
sample mean m̄ = 1

n

∑n
j=1 yj is enough. We say that m̄ is a sufficient statistic for this detection.
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6. (15%)

Assume that the pair (X,Y ) is equally likely to be any one of the eight values indicated in the
figure below.

1. Specify the random variable E[X|Y ] as a function of Y ;

2. What is the p.m.f. of E[X|Y ]?

3. Are X and Y uncorrelated? Explain.

1. To specify E[X|Y ], we compute it for each value of Y . Using the fact that (X, Y ) is equally
likely to be any one of the eight values, we get

E[X|Y ] =





1 if Y = 2
1 if Y = 0
1 if Y = 1
4/3 if Y = −1

Notice that E[X|Y ] takes only two values.

2. The pmf of E[X|Y ] is given by

E[X|Y ] =
{

1 w.p 5/8
4/3 w.p 3/8

3. We can easily verify that E[XY ] = 2/8 6= E[X]E[Y ] = 27/80. Thus X and Y are uncorre-
lated.

- 1

- 1

0
1

2

0 1 2 3

X

Y

Figure 1: Sample space of the random variables X,Y defined in Problem 6.
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