1. (15%)
There are two coins. Coin 1 is fair. Coin 2 is such that \(P(H) = 0.6 \).
1) You flip the two coins together repeatedly. What is the probability that coin 1 yields \(H \) before coin 2?
2) You are given one of the two coins, with equal probabilities. You flip the coin twice and you get \(H \) both times. What is the probability that you got coin 1?
2. (20%)
You throw a dart at a circular target with radius 1. You miss the target with probability 0.2. If you hit the target, the dart location is uniformly distributed inside the target. Let X be the distance from dart to the center of the target when you hit it and $X = 2$ when you miss the target.
1) What is the p.d.f. of X;
2) Plot the c.p.d.f. of X;
3) Calculate $Var(X)$, the variance of X.

3. (20%) You pick a point ω uniformly in the square $[0, 1]^2$ and you designate the coordinates of the point by $X(\omega)$ and $Y(\omega)$.

1) Calculate $E(|X - Y|)$.

2) Calculate $P[X \leq x \mid |X - Y| > 0.5]$ for $x \in [0, 1]$.
4. (15%) Assume that humanity will either survive 10 billion years or ten million years, with equal probabilities. For simplicity, assume that the population is constant and about equal to 8 billion people, in both cases. Assume also that you are picked randomly human, among all humans who will ever live. You observe that humanity has been around for about 5 million years. What is the probability that humanity will survive ten billion years, given your observation?
5. (15%)
A randomly picked 126 student has a 20% chance of being a genius and an 80% chance of being very smart but somehow short of genius. A genius gets a score on the first midterm that is uniformly distributed in \([70, 100]\). A very smart student gets a score that is uniformly distributed in \([0, 100]\). A genius has a probability 80% of going to graduate school and a very smart student has a probability 20% of going to graduate school. What is the probability that a randomly picked student who gets a score of 80 will go to graduate school?
6. (15%)
Assume that $P(X = n) = (1 - p)^{n-1} p, n \geq 1$ where $p \in (0, 1)$. Calculate $E(X^k)$ for $k \geq 1$.