Name (Last, First):
SID:

1. (15%)

There are two coins. Coin 1 is fair. Coin 2 is such that $P(H)=0.6$.

1) You flip the two coins together repeatedly. What is the probability that coin 1 yields H before coin 2 ?
2) You are given one of the two coins, with equal probabilities. You flip the coin twice and you get H both times. What is the probability that you got coin 1 ?

2. (20\%)

You throw a dart at a circular target with radius 1 . You miss the target with probability 0.2 . If you hit the target, the dart location is uniformly distributed inside the target. Let X be the distance from dart to the center of the target when you hit it and $X=2$ when you miss the target.

1) What is the p.d.f. of X;
2) Plot the c.p.d.f. of X;
3) Calculate $\operatorname{Var}(X)$, the variance of X.
3. $\mathbf{(2 0 \%}$) You pick a point ω uniformly in the square $[0,1]^{2}$ and you designate the coordinates of the point by $X(\omega)$ and $Y(\omega)$.
1) Calculate $E(|X-Y|)$.
2) Calculate $P[X \leq x| | X-Y \mid>0.5]$ for $x \in[0,1]$.

4. (15%)

Assume that humanity will either survive 10 billion years or ten million years, with equal probabilities. For simplicity, assume that the population is constant and about equal to 8 billion people, in both cases. Assume also that you are picked randomly human, among all humans who will ever live. You observe that humanity has been around for about 5 million years. What is the probability that humanity will survive ten billion years, given your observation?

5. (15%)

A randomly picked 126 student has a 20% chance of being a genius and an 80% chance of being very smart but somehow short of genius. A genius gets a score on the first midterm that is uniformly distributed in [70, 100]. A very smart student gets a score that is uniformly distributed in $[0,100]$. A genius has a probability 80% of going to graduate school and a very smart student has a probability 20% of going to graduate school. What is the probability that a randomly picked student who gets a score of 80 will go to graduate school?
6. (15%)

Assume that $P(X=n)=(1-p)^{n-1} p, n \geq 1$ where $p \in(0,1)$. Calculate $E\left(X^{k}\right)$ for $k \geq 1$.

