Department of EECS - University of California at Berkeley

EECS 126 - Probability and Random Processes - Spring 2007
Midterm 1: 2/19/2007

Solutions

1. (10%)

You are given a 1-meter long wood stick. You choose two points A and B uniformly and independently on the stick. You cut the stick at A and at B. You are left with three pieces. What is the probability that you can form a triangle with the three pieces?

Consider the case $A<B$. The three pieces of stick have lengths $X=A, Y=B-A, Z=1-B$. You can make a triangle if each length is larger than the sum of the other two. That is, we need $X>Y+Z, Y>X+Z, Z>X+Y$. These inequalities in terms of A, B, C give $B \geq 1 / 2, A \leq$ $1 / 2, B-A \leq 1 / 2$.

The case $B<A$ is symmetric and gives $A \geq 1 / 2, B \leq 1 / 2, A-B \leq 1 / 2$.
Combining these two events, we see that they correspond to the sets of pairs (A, B) shown in the figure below:

Figure 1: The shaded triangles correspond to the desired event.
The probability that (A, B) falls in the shaded set is $1 / 4$.

2. (10%)

Let X be Poisson with parameter $\lambda>0$. For any positive integer k, calculate

$$
E(X(X-1)(X-2) \times \cdots \times(X-k)) .
$$

We find

$$
\begin{aligned}
& E(X(X-1)(X-2) \times \cdots \times(X-k))=\sum_{n \geq 0} n(n-1)(n-2) \times \cdots \times(n-k) \frac{\lambda^{n}}{n!} e^{-\lambda} \\
& \quad=\lambda^{k+1} \sum_{n \geq k+1} \frac{\lambda^{n-k-1}}{(n-k-1)!} e^{-\lambda}=\lambda^{k+1} \sum_{m \geq 0} \frac{\lambda^{m}}{m!} e^{-\lambda} \\
& \quad=\lambda^{k+1} .
\end{aligned}
$$

3. $\mathbf{(1 0 \%)}$) Two friends agree to go to a given bar between noon and $1: 00 \mathrm{pm}$ and to wait for ten minutes there. Assume they choose the time they go to the bar independently and uniformly between noon and 1:00 pm , what is the probability that they meet in the bar?

Say that one friend arrives at time X and the other at time Y. They meet if $X-Y \leq 1 / 6$. This event corresponds to the set of pairs (X, Y) shown in the shaded set in the figure below:

Figure 2: The shaded are corresponds to the desired event.
The probability that (X, Y) is picked in the shaded set is $11 / 36$.

4. (10%)

You do not feel too well and you wonder why. The prior probability that you have the flu, some food poisoning, or some other disease D is $10 \%, 5 \%$, and 15%, respectively. The probability that you feel this sick if you have the flu, food poisoning. or the disease D, is $80 \%, 95 \%, 20 \%$, respectively. What is the probability that you are sick because of food poisoning?

Let B be the event "you feel sick," A_{1} the event "you have the flu," A_{2} the event "you have some food poisoning," and A_{3} the event "you have some other disease."

We are given $P\left(A_{1}\right)=0.1, P\left(A_{2}\right)=0.05, P\left(A_{3}\right)=0.15$ and $P\left[B \mid A_{1}\right]=0.8, P\left[B \mid A_{2}\right]=0.95, P\left[B \mid A_{3}\right]=$ 0.2 . We find the probability $P\left[A_{2} \mid B\right]$ by using Bayes' rule:

$$
\begin{aligned}
P\left[A_{2} \mid B\right] & =\frac{P\left(A_{2}\right) P\left[B \mid A_{2}\right]}{P\left(A_{1}\right) P\left[B \mid A_{1}\right]+P\left(A_{2}\right) P\left[B \mid A_{2}\right]+P\left(A_{3}\right) P\left[B \mid A_{3}\right]} \\
& =\frac{0.05 \times 0.95}{0.1 \times 0.8+0.05 \times 0.95+0.15 \times 0.2} \\
& \approx 0.30 .
\end{aligned}
$$

5. (10%)

Can you find a probability space and events A, B so that

$$
P[A \mid B]>P(A) \text { and } P[B \mid A]<P(B) ?
$$

The answer is no. Indeed, the first inequality implies

$$
P(A \cap B)>P(A) P(B)
$$

while the second implies

$$
P(A \cap B)<P(A) P(B),
$$

and these are clearly incompatible.
6. (10%)

How many times, on average, do you have to roll a balanced die until you see all six faces at least once?

You recall that if a coin flip has a probability p of producing a head, you have to flip it $1 / p$ times, on average to get the first head.
You roll the die once to get the first face. The probability of getting a different face after that roll is $5 / 6$, so that it takes $6 / 5$ rolls, on average, to get a second face. After that roll, the probability of getting a face different from the first two is $4 / 6$, so that it takes $6 / 4$ rolls to get a third face, and so on.

Hence, the answer is

$$
1+6 / 5+6 / 4+6 / 3+6 / 2+6 / 1 \approx 14.7
$$

7. (10%)

Let X be a random variable that is uniform in $[0,1]$. Calculate the variance of X^{n} for $n \geq 1$.

We find

$$
\operatorname{var}\left(X^{n}\right)=E\left(X^{2 n}\right)-E\left(X^{n}\right)^{2}=\frac{1}{2 n+1}-\frac{1}{(n+1)^{2}} .
$$

We used the fact that

$$
E\left(X^{m}\right)=\int_{0}^{1} x^{m} d x=\frac{1}{m+1} .
$$

8. (10%)

State and prove Markov's inequality.

Markov's inequality states that if X is a nonnegative random variable, then

$$
P(X \geq a) \leq \frac{E(X)}{a}
$$

To prove the inequality, we observe that

$$
X \geq a 1\{X \geq a\}
$$

Taking the expectation, we get $E(X) \geq a P(X \geq a)$.
9. (10%)

You throw a dart randomly and uniformly in a unit circle. Let X be the distance between the dart and the center. Calculate $E(\sin (X))$.

The pdf of X is $f(x)=2 x$ for $0 \leq x \leq 1$ and $f(x)=0$ for x not in $[0,1]$. Consequently,
$E(\sin (X))=\int_{0}^{1} \sin (x) 2 x d x=-\int_{0}^{1} 2 x d \cos (x)=-[2 x \cos (x)]_{0}^{1}+2 \int_{0}^{1} \cos (x) d x=-2 \cos (1)+2 \sin (1)$.

Figure 3: The cpdf of X.
10. (10%)

The random variable X has the c.p.d.f. shown above. Calculate $E(X)$ and $\operatorname{var}(X)$.

We see that

$$
E(X)=\int_{-1}^{1} x \times 0.125 d x+1 \times 0.25+\int_{1}^{2} x \times 0.5 d x=0+0.25+0.75=1 .
$$

Also,

$$
E\left(X^{2}\right)=\int_{-1}^{1} x^{2} \times 0.125 d x+1 \times 0.25+\int_{1}^{2} x^{2} \times 0.5 d x=0.25 / 3+0.25+\left(2^{3}-1^{3}\right) 0.5 / 3=1.5 .
$$

Hence,

$$
\operatorname{var}(X)=1.5-1^{2}=0.5
$$

