
EE 126, Spring 2006, Midterm 1 

Problem 1: (14 points)  

Since there is no direct flight from San Diego (S) to New York (N), every time Alice wants to go to the
New York, she has to stop in either Chicago (C) or Denver (D). Due to bad weather conditions, both 
the flights from S to C and the flights from C to N have independently a delay of 1 hour with 
probability p. Similarly, at Denver airport, both incoming and outgoing flights are independently
subject to a 2 hour delay with probability q. On any given occasion, Alice chooses randomly between 
the Chicago or Denver routes with equal probability.  

 (a) (2pt) What is the average total delay (across both legs of the overall trip) that she experiences in going 
from S to N?  
 
(b) (3pt) Suppose Alice arrives at N with a delay of two hours. What is the probability that she flew through 
C?  
 
(c) (3pt) Suppose that Alice wants to maximize the probability that she arrives in New York with a total 
delay < 2 hours. Under what conditions on p and q is going via Chicago a better choice than going via 
Denver?  
 
(d) (3pt) Suppose now that Alice always flies through C. On average, how many trips does she make before 
experiencing a 2 hour delay?  
 
(e) (3pt) Suppose now that the flight between S and D is known to be delayed, but Alice still randomly flies 
either via C or D with equal probability. With what delay should she expect to arrive at N?  
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Problem 2: (13 points)  

We transmit a bit of information which is 0 with probability 1 -P and 1 with p. Because of noise on the 
channel, each transmitted bit is received correctly with probability 1 -E.  

 (a) (2pt) Suppose we observe a "1" at the output. Find the conditional probability PI that the transmitted bit is 
a "1".  
 
(b) (4pt) Suppose that we transmit the same information bit n times over the channel. Calculate the 
probability that the information bit is a "1" given that you have observed n "l"s at the output. What happens 
when n grows? Does it make sense intuitively?  
 
(c) (3pt) For this  part of the problem, we suppose that we transmit the symbol "1" a total of n times over the 
channel. At the output of the channel, suppose that we observe the symbol "1" three times in the n received 
bits, and that we observe a "1" at the n-th transmission. Given these facts, what is the probability that the 
k-th received bit is a "I"?  
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 (d) (4pt) Now let's go back to the situation in part (a)-that is, some unknown bit is transmitted over the 
channel, and the received bit is a "1". Suppose in addition that the same information bit is transmitted a 
second time, and you again receive another "1". We want to find a recursive formula to update PI to get P2, 
the conditional probability that the transmitted bit is a "1" given that we have observed two "l"s at the output 
of the channel. Show that the update can be written as  



 

Problem 3: (13 points)  

You play the lottery by choosing a set of 6 numbers from {1, 2, ... ,49} without replacement. Let X be a 
random variable representing the number of matches between your set and the winning set. (The order
of numbers in your set and the winning set does not matter.) You win the grand prize if all 6 numbers 
match (i.e., if X = 6).  

 (a) (3pt) Compute the PMF PX of X. What is the probability of winning the grand prize?  
 
(b) (3pt) Suppose that before playing the lottery, you (illegally) wiretap the phone of the lottery, and learn 
that 2 of the winning numbers are between 1 and 20; another 2 are between 21 and 40, and the remaining 2 
are between 41 and 49. If you use this information wisely in choosing your six numbers, how does your 
probability of winning the grand prize improve?  
 

(c) (3pt) Now suppose  instead that you determine by illegal wiretapping that the maximum number in 
the winning sequence is r ~ 6. Ifyou use this information wisely in choosing your 6 numbers, how does your 
probability of winning the grand prize improve?  
 
(d) (4pt) Use a counting argument to establish the identity  

 

(Hint: Part (c) of this problem may be useful.)  
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