Department of EECS - University of California at Berkeley
EECS126 - Probability and Random Processes - Spring 2001
Midterm No. 2: 4/6/2001

Student Name / SID / email:

Part 1 - Multiple Choice (30\%) Each question below counts for 5%.

Problem 1: Is it true that

$$
\operatorname{var}(X+Y) \geq \operatorname{var}(X)+\operatorname{var}(Y)
$$

NO: Consider $X=-Y$ where $E[X]=0$ and $\operatorname{var}(X)>0$.
Problem 2: Is it true that

$$
E[X \mid X+Y]=X+E[X \mid Y]
$$

NO: Consider X and Y i.i.d. Uniform[0, 1]. By symmetry and linearity of conditional expectation

$$
\begin{equation*}
E[X \mid X+Y]=\frac{X+Y}{2} \tag{1}
\end{equation*}
$$

but

$$
\begin{equation*}
X+E[X \mid Y]=X+\frac{1}{2} \tag{2}
\end{equation*}
$$

Problem 3: Let X, Y, Z be i.i.d. $\mathrm{N}(0,1)$. Is the following formula correct?

$$
E[2 X+Y-Z \mid X-Y+Z]=0
$$

YES: Note that $2 X+Y-Z$ and $X-Y+Z$ are Gaussian random variables. Furthermore if they are uncorrelated, they are independent.

$$
\begin{align*}
\operatorname{cov}(2 X+Y-Z, X-Y+Z) & =2 E\left[X^{2}\right]-E\left[Y^{2}\right]-E\left[Z^{2}\right] \\
& =2-1-1 \tag{3}\\
& =0
\end{align*}
$$

Since they are uncorrelated, they are independent. Hence

$$
\begin{align*}
E[2 X+Y-Z \mid X-Y+Z] & =E[2 X+Y-Z] \tag{4}\\
& =0
\end{align*}
$$

Problem 4: Assume that X and Y are two random variables such that $X+Y$ and $X-Y$ are independent. Is it always true that X and Y are independent?

NO: Consider $X=1$ and $Y=X$.

$$
\begin{align*}
F_{X+Y, X-Y}(u, v) & =P(2 \leq u, 0 \leq v) \\
& =1(2 \leq u) 1(0 \leq v) \tag{5}\\
& =F_{X+Y}(u) F_{X-Y}(v)
\end{align*}
$$

Problem 5: Is it always true that

$$
\operatorname{var}\left(\frac{X+Y}{2}\right) \leq \max \{\operatorname{var}(X), \operatorname{var}(Y)\}
$$

YES:

$$
\begin{align*}
\operatorname{var}\left(\frac{X+Y}{2}\right) & =\frac{1}{4}(\operatorname{var}(X)+\operatorname{var}(Y)+2 \operatorname{cov}(X, Y)) \tag{6}\\
& \leq \frac{1}{4}(2 \max (\operatorname{var}(X), \operatorname{var}(Y))+2 \operatorname{cov}(X, Y))
\end{align*}
$$

But

$$
\begin{align*}
E[(X-E[X])(Y-E[Y])]^{2} & \leq E\left[(X-E[X])^{2}\right] E\left[(Y-E[Y])^{2}\right] \\
& \leq \max (\operatorname{var}(X), \operatorname{var}(Y))^{2} \tag{7}
\end{align*}
$$

Thus

$$
\begin{align*}
\operatorname{cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& \leq \max (\operatorname{var}(X), \operatorname{var}(Y)) \tag{8}
\end{align*}
$$

Finally

$$
\begin{align*}
\operatorname{var}\left(\frac{X+Y}{2}\right) & \leq \frac{1}{4}(2 \max (\operatorname{var}(X), \operatorname{var}(Y))+2 \operatorname{cov}(X, Y)) \tag{9}\\
& \leq \max (\operatorname{var}(X), \operatorname{var}(Y))
\end{align*}
$$

Problem 6: Let (X, Y) be picked uniformly in a unit circle. Is it true that X and Y are uncorrelated? YES:

$$
\begin{align*}
E[X \mid Y] & =0 \\
Y E[X \mid Y] & =0 \\
E[Y E[X \mid Y]] & =0 \\
E[E[Y X \mid Y]] & =0 \tag{10}\\
E[Y X] & =0 \\
E[Y X]-E[Y] E[X] & =-E[Y] E[X] \\
\operatorname{cov}(Y, X) & =0
\end{align*}
$$

Part 2 - Problem A (20\%)

Let $X \in\{0,1\}$ and Z be $\mathrm{N}(0,1)$. Let also $Y=X+(X+1) Z$. Find the MLE of X given Y. SOLUTION:

Conditioned on $\{X=0\}, Y \sim N(0,1)$, and conditioned on $\{X=1\}, Y \sim N(1,4)$.

$$
\begin{aligned}
& f_{Y \mid X=1}(Y \mid X=1) \underset{\hat{X}=0}{\gtrless} f_{Y \mid X=0}(Y \mid X=0)
\end{aligned}
$$

$$
\begin{align*}
& e^{-\frac{1}{8}(Y-1)^{2}} \stackrel{\hat{X}=1}{\gtrless} 2 e^{-\frac{1}{2} Y^{2}} \tag{11}\\
& \exp \left(-\frac{Y^{2}}{8}+\frac{Y}{4}-\frac{1}{8}+\frac{Y^{2}}{2} \underset{\hat{X}=0}{\gtrless} 2\right. \\
& 2 Y^{2}+2 Y-1 \underset{\hat{X}=0}{\stackrel{\hat{X}=1}{\gtrless}} 8 \log 2 \\
& 2 Y^{2}+2 Y-(1+8 \log 2) \underset{\hat{X}=0}{\stackrel{\hat{X}=1}{\gtrless} 0} 0
\end{align*}
$$

Thus,

$$
\begin{equation*}
\hat{X}=1\left(Y \notin\left[y_{0}, y_{1}\right]\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
& y_{0}=\frac{1-1 \sqrt{1+3(1+\log 2)}}{3} \tag{13}\\
& y_{1}=\frac{1+1 \sqrt{1+3(1+\log 2)}}{3}
\end{align*}
$$

Part 3 - Problem B (25\%)

Let (X, Y) be picked uniformly in $[0,1]^{2}$. Calculate $L\left[X \mid(X+Y)^{2}\right]$.
SOLUTION:

$$
\begin{align*}
E\left[(X+Y)^{2}\right] & =E\left[X^{2}+2 X Y+Y^{2}\right] \\
& =\frac{1}{3}+(2)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)+\frac{1}{3} \tag{14}\\
& =\frac{7}{6}
\end{align*}
$$

$\operatorname{var}(X+Y)^{2}=E\left[(X+Y)^{4}\right]-\left(E\left[(X+Y)^{2}\right]\right)^{2}$
$=E\left[X^{4}+4 X^{3} Y+6 X^{2} Y^{2}+4 X Y^{3}+Y^{4}\right]-\left(\frac{7}{6}\right)^{2}$
$=\frac{1}{5}+(4)\left(\frac{1}{4}\right)\left(\frac{1}{2}\right)+(6)\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)+(4)\left(\frac{1}{2}\right)\left(\frac{1}{4}\right)+\frac{1}{5}-\left(\frac{7}{6}\right)^{2}$
$=\frac{31}{15}-\frac{49}{36}$
$=\frac{127}{180}$

$$
\begin{align*}
\operatorname{cov}\left(X,(X+Y)^{2}\right) & =E\left[X^{3}+2 X^{2} Y+X Y^{2}\right]-E[X] E\left[X^{2}+2 X Y+Y^{2}\right] \\
& =\frac{1}{4}+(2)\left(\frac{1}{3}\right)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)-\left(\frac{1}{2}\right)\left(\frac{1}{3}+(2)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)+\frac{1}{3}\right) \tag{16}\\
& =\frac{1}{2}
\end{align*}
$$

$$
\begin{align*}
L\left[X \mid(X+Y)^{2}\right] & =E[X]+\frac{\operatorname{cov}\left(X,(X+Y)^{2}\right)}{\operatorname{var}(X+Y)^{2}}\left((X+Y)^{2}-E\left[(X+Y)^{2}\right]\right. \tag{17}\\
& =\frac{1}{2}+\frac{90}{127}\left((X+Y)^{2}-\frac{7}{6}\right)
\end{align*}
$$

Part 4 - Problem C (25\%)

Given $X \in\{0,1,2, \ldots\}, Y$ is picked uniformly in $\{0,1,2, \ldots, X\}$. Assume that $P(X=n)=$ $(n+1) p^{n}(1-p)^{2}$ for $n \geq 0$ where p is a known number in (0,1). Calculate $E[X \mid Y]$.

SOLUTION:

We need to determine the conditional probability $P(X=n \mid Y=m)$ and then determine the average value of X with respect to this mass function.

$$
\begin{equation*}
P(X=n \mid Y=m)=\frac{P(Y=m \mid X=n) P(X=n)}{P(Y=m)} \tag{18}
\end{equation*}
$$

We are given that

$$
\begin{equation*}
P(Y=m \mid X=n)=\frac{1}{n+1} 1(0 \leq m \leq n) \tag{19}
\end{equation*}
$$

We obtain $P(Y=m)$ by marginalizing X out of the joint mass function.

$$
\begin{align*}
P(Y=m) & =\sum_{n=0}^{\infty} P(X=n, Y=m) \\
& =\sum_{n=0}^{\infty} P(Y=m \mid X=n) P(X=n) \\
& =\sum_{n=0}^{\infty} \frac{1}{n+1} 1(0 \leq m \leq n)(n+1) p^{n}(1-p)^{2} \tag{20}\\
& =\sum_{n=m}^{\infty} p^{n}(1-p)^{2} \\
& =\frac{p^{m}}{1-p}
\end{align*}
$$

Thus

$$
\begin{align*}
P(X=n \mid Y=m) & =\frac{\frac{1}{n+1} 1(0 \leq m \leq n)(n+1) p^{n}(1-p)^{2}}{\frac{p^{m}}{1-p}} \tag{21}\\
& =\frac{(1-p)^{3}}{p^{m}} 1(0 \leq m \leq n) p^{n}
\end{align*}
$$

Averaging X against this mass function

$$
\begin{align*}
E[X \mid Y=m] & =\sum_{n=0}^{\infty} n P(X=n \mid Y=m) \\
& =\sum_{n=0}^{\infty} n \frac{(1-p)^{3}}{p^{m}} 1(0 \leq m \leq n) p^{n} \\
& =\frac{(1-p)^{3}}{p^{m}} \sum_{n=m}^{\infty} n p^{n} \\
& =\frac{(1-p)^{3}}{p^{m}} \sum_{n=m}^{\infty} p \frac{\partial}{\partial p} p^{n} \tag{22}\\
& =\frac{(1-p)^{3}}{p^{m}} p \frac{\partial}{\partial p} \sum_{n=m}^{\infty} p^{n} \\
& =\frac{(1-p)^{3}}{p^{m}} p \frac{\partial}{\partial p} \frac{p^{m}}{1-p} \\
& =\frac{(1-p)^{3}}{p^{m}} \frac{m(1-p) p^{m}+p^{m+1}}{(1-p)^{2}} \\
& =m(1-p)^{2}+p(1-p)
\end{align*}
$$

So

$$
\begin{equation*}
E[X \mid Y]=(1-p)^{2} Y+p(1-p) \tag{23}
\end{equation*}
$$

