Department of EECS - University of California at Berkeley EECS126 - Probability and Random Processes - Spring 2000 Midterm No. 2: 4/5/2000

Name and SID:

Answer the questions on these four sheets. Show your work. Good luck.

Problem 1: Let X, Y be independent standard Gaussian random variables. Calculate $E\left[(X+Y)^{4} \mid X-Y\right]$.

Problem 2: Let X, Y be independent random variables uniformly distributed in $[0,1]$. Calculate $E[X \mid X<Y]$.

Problem 3: Let X, Y be independent random variables uniformly distributed in $[0,1]$. Calculate $E\left[X \mid X^{2}+Y^{2}\right]$ and the LLSE of X given $X^{2}+Y^{2}$.

Problem 4: A machine produces steel balls for ball bearings. When the machine operates properly, the radii of the balls are i.i.d. and $N(100,4)$. When the machine is defective, the radii are i.i.d. and $N(98,4)$.
a. You measure n balls produced by the machine and you must raise an alarm if you believe that the machine is defective. However, you want to limit the probability of false alarm to 1%. Explain how you propose to do this.
b. Compute the probability of missed detection that you obtain in part (a). This probability depends on the number n of balls, so you cannot get an explicit answer. Select the value of n so that this probability of missed detection is 0.1%.

To solve this problem you need to use some of the following information: Let $Q(x):=P(N(0,1)>x)$. Then,

$$
Q(1.6) \approx 5 \% ; Q(2.3) \approx 1 \% ; Q(2.6) \approx 0.5 \% ; Q(3.1) \approx 0.1 \% ; Q(3.3) \approx 0.05 \% ; Q(3.7) \approx 10^{-4}
$$

