\qquad
\qquad

UNIVERSITY OF CALIFORNIA
College of Engineering
Department of Electrical Engineering and
Computer Sciences
Professor Tse
Fall 1998

EECS 126 - MIDTERM \#1

2 October 1998, 11:10-12:10
[20 pts.] 1a. Suppose that E, F are events and $P(E)=0.4$. What can you say about $P(E \mid F)$ if:
i) E and F are independent?
ii) E and F are mutually exclusive?
iii) $F \subset E$?
iv) $E \subset F$?
[10 pts.] b. If the occurrence of event B makes A more likely (i.e., $P(A \mid B)>P(A)$), then does the occurrence of event A make B more likely? Justify you answer.
[30 pts.] 2. There are 2 machines having lifetimes distributed with cdf's F_{1} and F_{2}. Suppose one of the 2 machines is randomly picked with equal probability and put in operation at time 0 . Conditional on the fact that the machine is still running at time t, what is the probability that it is machine 1 that was picked?
[20 pts.] 3a. Consider a binary channel with cross-over probability

$$
\begin{aligned}
& P(\text { output }=1 \mid \text { input }=0)=\varepsilon_{1} \\
& P(\text { output }=0 \mid \text { input }=1)=\varepsilon_{2}
\end{aligned}
$$

Suppose $P($ input $=0)=p \quad$.

$$
P(\text { input }=1)=1-p
$$

Further suppose you use a detection rule which decides that 0 is transmitted if 0 is received, and 1 is transmitted if 1 is received. Find the probability that you will make an error.
[20 pts.] b. Suppose now that $p=\frac{1}{2}, \varepsilon_{1}=\varepsilon_{2}=\varepsilon<\frac{1}{2}$. A student thinks that a random detection rule can perform better than the detection rule above. Namely, the student flips a biased coin with $P($ head $)=\varepsilon$. If the coin lands on a tail, the student decides that what is transmitted is the same as what is received; if the coin lands on a head, he decides that what is transmitted is opposite to what is received. What is the probability that the student makes an error using this rule? Is this a better rule than the one in (a)?

Name:
Student ID No:

