$\qquad$
$\qquad$

UNIVERSITY OF CALIFORNIA
College of Engineering
Department of Electrical Engineering and Computer Sciences

Professor Ren
Fall 1997

## EECS 126 - MIDTERM \#2

## November 17, 1997, Monday 7-9 p.m.

[42 pts.] 1. Given the joint probability density of two RVs $X$ and $Y$

$$
f_{X Y}(x, y)=\left\{\begin{array}{cl}
k(x+y) & 0 \leq x \leq 1,0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Find the value of $k$, and the $\operatorname{cdf} F_{X Y}(x, y) \cdot(6 \mathrm{pts}$.)
b) Find $F_{X}(x), F_{Y}(y), f_{X}(x), f_{Y}(y) .(6 \mathrm{pts}$.
c) Find the probability that $|X-Y| \leq 1 / 2$. (6 pts.)
d) Find $f_{X \mid Y}(x \mid y)$. ( 6 pts .)
e) Find the minimum mean square error estimator of $X$ given $Y$. Compute the resulting mean square error. (6 pts.)
f) Find the linear minimum mean square error estimator of $X$ given $Y$. Compute the resulting mean square error. ( 6 pts .)
g) Are $X$ and $Y$ independent? Uncorrelated? Orthogonal? Explain your answer. (6 pts.)
[35 pts.] 2. An electronic system has $n$ components. Let the lifetime of each component be $X_{i}, i=1,2, \ldots, n$, in hours. Assume that $X_{i}, i=1,2, \ldots, n$, are mutually independent, and have identical density $f_{X_{i}}(x)=e^{-x}, \quad x \geq 0$. Let the lifetime of the system be $Y$.
a) Suppose the system works only if all $n$ components work. Find the pdf and expectation of $Y$. ( 10 pts .)
b) Suppose we already know that the system has already lasted 10 hours. Find the conditional pdf and expectation of $Y$. (12 pts.)
c) To increase reliability, we use redundancy by increasing the number of components from $n$ to $2 n$. Suppose the system works so long as there are at least $n$ components working. Find the cdf of $Y$. (13 pts.)
[23 pts.] 3. Let $X_{1}, X_{2}, \ldots$ be a sequence of i.i.d. RVs with mean $\mu$ and unit variance. Suppose $\mu$ is unknown.
a) Propose a scheme to estimate $\mu$ from $X_{1}, \ldots, X_{n}$. (5 pts.)
b) Suppose your estimate of $\mu$ based on $X_{1}, \ldots, X_{n}$ is denoted as $\hat{\mu}_{n}$. Using Central Limit Theorem, find a range of $n$ that would guarantee the quality of the estimate in the following sense:

$$
P\left(\left|\hat{\mu}_{n}-\mu\right| \leq 0.1\right) \geq 0.9 .(18 \text { pts. })
$$

