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[42 pts.] 1.

 

Given the joint probability density of two RVs  and 

 

a)

 

 Find the value of , and the cdf . (6 pts.)

 

b) 

 

Find

 

 

 

. (6 pts.)

 

c)

 

 Find the probability that . (6 pts.)

 

d) 

 

Find

 

 

 

. (6 pts.)

 

e)

 

 Find the minimum mean square error estimator of  given . Compute the resulting
mean square error. (6 pts.)

 

f) 

 

Find the linear minimum mean square error estimator of  given . Compute the
resulting mean square error. (6 pts.)

 

g)

 

 Are  and  independent? Uncorrelated? Orthogonal? Explain your answer. (6 pts.)

 

[35 pts.] 2.

 

An electronic system has  components. Let the lifetime of each component be

, in hours. Assume that , are mutually independent,

and have identical density . Let the lifetime of the system be .

 

a)

 

Suppose the system works only if all  components work. Find the pdf and expectation

of . (10 pts.)

 

b)

 

Suppose we already know that the system has already lasted 10 hours. Find the condi-
tional pdf and expectation of . (12 pts.)

 

c)

 

To increase reliability, we use redundancy by increasing the number of components from
 to . Suppose the system works so long as there are at least  components working.

Find the cdf of . (13 pts.)
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[23 pts.] 3.

 

Let  be a sequence of i.i.d. RVs with mean  and unit variance. Suppose  is

unknown.

 

a)

 

Propose a scheme to estimate  from . (5 pts.)

 

b)

 

Suppose your estimate of  based on  is denoted as . Using Central Limit

Theorem, find a range of  that would guarantee the quality of the estimate in the follow-
ing sense:

. (18 pts.)
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