SOLUTIONS

Formulas: Given the short attention span induced by twitter and the like, we thought you might appreciate not having to remember the following formulas. After all, they are on Wikipedia.

$$
\begin{aligned}
& \mathbf{X}=N(\mu, \Sigma) \Leftrightarrow f_{\mathbf{X}}(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right\} \\
& (\mathbf{X}, \mathbf{Y}) J . G . \Rightarrow E[\mathbf{X} \mid \mathbf{Y}]=E(\mathbf{X})+\Sigma_{\mathbf{X Y}} \Sigma_{\mathbf{Y}}^{-1}(\mathbf{Y}-E(\mathbf{Y})) \\
& \operatorname{cov}(\mathbf{A X}, \mathbf{B Y})=\mathbf{A} \operatorname{cov}(\mathbf{X}, \mathbf{Y}) \mathbf{B}^{T} . \\
& {\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]} \\
& \text { If } V=N(0,1), \text { then } P(V>1)=0.159, P(V>1.64)=0.05 \\
& \quad P(V>1.96)=0.025, P(V>2)=0.023, P(V>2.58)=0.005 .
\end{aligned}
$$

Problem 1. (Short Problems 40\%)

- Give an example where $E[X \mid Y]=E(X)$ but X, Y are not independent.

Let $X=Y Z$ where Y, Z are independent and uniform in $[-1,1]$.

- Let X, Y be i.i.d., $B(100,0.3)$. Calculate $E[X-Y \mid X+Y]$.

By symmetry, $E[X-Y \mid X+Y]=0$.

- Let X, Y be as in the previous problem. Calculate $E\left[(X+Y)^{2} \mid X\right]$. We have

$$
\begin{aligned}
& E\left[(X+Y)^{2} \mid X\right]=X^{2}+2 X E(Y)+E\left(Y^{2}\right)=X^{2}+60 X+\operatorname{var}(Y)+E(Y)^{2} \\
& \quad=X^{2}+60 X+100 \times 0.3 \times 0.7+(30)^{2}
\end{aligned}
$$

- Assume that $\Sigma_{X}=\left[\begin{array}{ccc}4 & -1 & -2 \\ -1 & 2 & 0 \\ -2 & 0 & 1\end{array}\right]$. Calculate $\operatorname{var}\left(2 X_{1}+3 X_{2}+X_{3}\right)$.

One has $\operatorname{var}\left(\mathbf{a}^{T} \mathbf{X}\right)=\mathbf{a}^{T} \Sigma_{X} \mathbf{a}$. So,

$$
\operatorname{var}([2,3,1] \mathbf{X})=[2,3,1]\left[\begin{array}{ccc}
4 & -1 & -2 \\
-1 & 2 & 0 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]=[3,4,-3]\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]=13
$$

- Let X, Y, Z be i.i.d. $U[0,1]$. Calculate $E[2 X+3 Y+4 Z \mid X+Y+Z]$.

By symmetry,

$$
E[X \mid X+Y+Z]=E[Y \mid X+Y+Z]=E[Z \mid X+Y+Z]=\frac{1}{3}(X+Y+Z)
$$

Hence,

$$
E[2 X+3 Y+4 Z \mid X+Y+Z]=(2+3+4) \times \frac{1}{3}(X+Y+Z)=3(X+Y+Z)
$$

Problem 2. (20\%) Assume that $Y=X+a Z$ where X, Z are i.i.d., $N(0,1)$.
(a) Calculate $E[X \mid Y]$;
(b) What is the variance of X given Y ?
(c) Given $Y=y$, what is the distribution of X ?
(d) Express $P[X>c \mid Y=y]$ in terms of $\Phi(z):=P(Z \leq z)$ where $Z=N(0,1)$.
(a) $E[X \mid Y]=\Sigma_{X, Y} \Sigma_{Y}^{-1} Y=Y /\left(1+a^{2}\right)=: b Y$.
(b) We know that $X-E[X \mid Y]=X-b Y=X-b(X+a Z)=(1-b) X-a b Z$, so that the variance of X given Y is equal to

$$
\sigma^{2}=\operatorname{var}((1-b) X-a b Z)=(1-b)^{2}+(a b)^{2}=\frac{a^{2}}{1+a^{2}} .
$$

(c) Given $Y=y, X=N\left(b y, \sigma^{2}\right)$.
(d) We have

$$
\begin{aligned}
& P[X>c \mid Y=y]=P\left(N\left(b y, \sigma^{2}\right)>c\right)=P\left(N\left(0, \sigma^{2}\right)>c-b y\right) \\
& \quad=P\left(N(0,1)>\frac{c-b y}{\sigma}\right)=1-\Phi\left(\frac{c-b y}{\sigma}\right) .
\end{aligned}
$$

Problem 3. $(\mathbf{2 0 \%})$ Assume that $Y=4 X+Z$ where $Z=N(0,1)$ and $P(X=k)=1 / 3$ for $k \in\{-1,0,1\}$.
a) Calculate $\hat{X}=M A P[X \mid Y]$.
b) Calculate $P(\hat{X} \neq X)$.
a) A sketch of the densities shows that

$$
M A P[X \mid Y]= \begin{cases}-1, & \text { if } Y \leq-2 \\ 0, & \text { if } Y \in(-2,2) \\ 1, & \text { if } Y \geq 2\end{cases}
$$

b) We find,

$$
\begin{aligned}
& \left.\left.\left.\left.P(\hat{X} \neq X)=\frac{1}{3} P[\hat{X} \neq X) \right\rvert\, X=-1\right] \left.+\frac{1}{3} P[\hat{X} \neq X) \right\rvert\, X=0\right] \left.+\frac{1}{3} P[\hat{X} \neq X) \right\rvert\, X=1\right] \\
& \quad=\frac{1}{3} P[Y \geq-1 \mid X=-1]+\frac{1}{3} P[Y<-1 \text { or } Y>1 \mid X=0]+\frac{1}{3} P[Y<1 \mid X=1] \\
& \quad=\frac{1}{3} P(Z \geq 2)+\frac{1}{3} P(Z<-2 \text { or } Z>2)+\frac{1}{3} P(Z<-2) \\
& \quad=\frac{1}{3}[\alpha+2 \alpha+\alpha]=\frac{4}{3} \alpha
\end{aligned}
$$

where $\alpha=P(Z>2)=0.023$. Thus,

$$
P(\hat{X} \neq X) \approx 3 \%
$$

Problem 4. $(\mathbf{2 0 \%})$ When $X=0, Y=N(0,1)$. When $X=1, Y=N(0,4)$.
(a) Find $\hat{X}=g(Y)$ that maximizes $P[\hat{X}=1 \mid X=1]$ subject to $P[\hat{X}=1 \mid X=0] \leq 5 \%$.
(b) What is $P[X=1 \mid X=1]$?
(a) One has

$$
\hat{X}=1 \text { iff } L(y) \geq \lambda
$$

where λ is such that $P[\hat{X}=1 \mid X=0]=5 \%$. Now,

$$
L(y)=\frac{f_{1}(y)}{f_{0}(y)} \text { with } f_{1}(y)=\frac{1}{\sqrt{2 \pi 4}} \exp \left\{-y^{2} / 8\right\}, f_{0}(y)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-y^{2} / 2\right\}
$$

Hence,

$$
L(y)=A \exp \left\{y^{2}\left(\frac{1}{2}-\frac{1}{8}\right)\right\}=A \exp \left\{3 y^{2} / 8\right\} .
$$

Thus,

$$
L(y) \geq \lambda \Leftrightarrow|y|>\alpha, \text { for some } \alpha \text {. }
$$

We should choose α so that

$$
P[\hat{X}=1 \mid X=0]=P[|Y|>\alpha \mid X=0]=P(|N(0,1)|>\alpha)=5 \% .
$$

Hence, $\alpha=1.96$.
(b) One finds

$$
P[\hat{X}=1 \mid X=1]=P[|Y|>\alpha \mid X=1]=P(|N(0,4)|>1.96) \approx P(|N(0,1)|>1) \approx 32 \% .
$$

