Formulas: Given the short attention span induced by twitter and the like, we thought you might appreciate not having to remember the following formulas. After all, they are on Wikipedia.

$$
\begin{aligned}
& \mathbf{X}=N(\mu, \Sigma) \Leftrightarrow f_{\mathbf{X}}(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right\} \\
& (\mathbf{X}, \mathbf{Y}) J . G . \Rightarrow E[\mathbf{X} \mid \mathbf{Y}]=E(\mathbf{X})+\Sigma_{\mathbf{X Y}} \Sigma_{\mathbf{Y}}^{-1}(\mathbf{Y}-E(\mathbf{Y})) \\
& \operatorname{cov}(\mathbf{A X}, \mathbf{B Y})=\mathbf{A} \operatorname{cov}(\mathbf{X}, \mathbf{Y}) \mathbf{B}^{T} . \\
& {\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]} \\
& \text { If } V=N(0,1), \text { then } P(V>1)=0.159, P(V>1.64)=0.05 \\
& \quad P(V>1.96)=0.025, P(V>2)=0.023, P(V>2.58)=0.005
\end{aligned}
$$

Problem 1. (Short Problems 40\%)

- Give an example where $E[X \mid Y]=E(X)$ but X, Y are not independent.
- Let X, Y be i.i.d., $B(100,0.3)$. Calculate $E[X-Y \mid X+Y]$.
- Let X, Y be as in the previous problem. Calculate $E\left[(X+Y)^{2} \mid X\right]$.
- Assume that $\Sigma_{X}=\left[\begin{array}{ccc}4 & -1 & -2 \\ -1 & 2 & 0 \\ -2 & 0 & 1\end{array}\right]$. Calculate $\operatorname{var}\left(2 X_{1}+3 X_{2}+X_{3}\right)$.
- Let X, Y, Z be i.i.d. $U[0,1]$. Calculate $E[2 X+3 Y+4 Z \mid X+Y+Z]$.

Problem 2. $\mathbf{(2 0 \%)}$ Assume that $Y=X+a Z$ where X, Z are i.i.d., $N(0,1)$.
(a) Calculate $E[X \mid Y]$;
(b) What is the variance of X given Y ?
(c) Given $Y=y$, what is the distribution of X ?
(d) Express $P[X>c \mid Y=y]$ in terms of $\Phi(z):=P(Z \leq z)$ where $Z=N(0,1)$.

Problem 3. $\mathbf{(2 0 \%}$) Assume that $Y=4 X+Z$ where $Z=N(0,1)$ and $P(X=k)=1 / 3$ for $k \in\{-1,0,1\}$.
a) Calculate $\hat{X}=M A P[X \mid Y]$.
b) Calculate $P(\hat{X} \neq X)$.

Problem 4. $(\mathbf{2 0 \%})$ When $X=0, Y=N(0,1)$. When $X=1, Y=N(0,4)$.
(a) Find $\hat{X}=g(Y)$ that maximizes $P[\hat{X}=1 \mid X=1]$ subject to $P[\hat{X}=1 \mid X=0] \leq 5 \%$.
(b) What is $P[X=1 \mid X=1]$?

