Department of EECS - University of California at Berkeley
EECS 126 - Probability and Random Processes - Fall 2008
Midterm 2: 11/18/2008

SOLUTIONS

1. Definition ($\mathbf{1 0 \%}$)

Define "Jointly Gaussian Random Variables"
Answer. A collection of random variables with the property that an arbitrary linear combination of them is Gaussian.
Also acceptable: A collection of random variables that are linear combinations of i.i.d. standard Gaussian random variables.

2. Orthogonality (10\%)

Give an example of a two orthogonal random variables that are not independent.
Answer. Let (X, Y) be uniformly distributed in the set $\{(-1,0),(0,-1),(1,0),(0,1)\}$.

3. Gaussian but not jointly ($\mathbf{1 0 \%}$)

Give an example of two $N(0,1)$ random variables that are not jointly Gaussian.
Answer. Let X, Z be independent with $X=N(0,1)$ and $P(Z=-1)=P(Z=1)$. Then X and $Y=X Z$ are $N(0,1)$ but not jointly Gaussian.

4. Conditional Expectation (10\%)

Is it true that $E[X \mid Y]=0$ implies that X and Y are uncorrelated? Prove or provide a counterexample.

Answer. This is true. First note that $E(X)=E(E[X \mid Y])=0$. Hence,

$$
E(X Y)=E(E[X Y \mid Y])=E(Y E[X \mid Y])=E(Y .0)=0=E(X) E(Y) .
$$

5. Conditional Expectation, again (10\%)

Let X, Y, Z be i.i.d. and uniformly distributed in [0, 1]. Calculate $E\left[(X+Y)^{2} \mid Y+Z\right]$.
Answer. First note that
$E\left[(X+Y)^{2} \mid Y+Z\right]=E\left[X^{2}+2 X Y+Y^{2} \mid Y+Z\right]=\frac{1}{3}+E\left[Y+Y^{2} \mid Y+Z\right]=\frac{1}{3}+\frac{1}{2}(Y+Z)+E\left[Y^{2} \mid Y+Z\right]$.
By drawing Figure 1, we see that, given $Y+Z=u, Y$ is uniform in $[0, u]$ if $0<u<1$ and Y is uniform in $[u-1,1]$ if $1<u<2$. Also, note that if $Y=U[a, b]$, then

$$
E\left(Y^{2}\right)=\int_{a}^{b} y^{2} \frac{1}{b-a} d y=\frac{b^{3}-a^{3}}{b-a}=\frac{1}{3}\left(a^{2}+a b+b^{2}\right) .
$$

Hence,

$$
E\left[Y^{2} \mid Y+Z=u\right]=\left\{\begin{array}{l}
u^{2} / 3, \text { if } 0<u<1, \\
\left(u^{2}-u+1\right) / 3, \text { if } 1<u<2 .
\end{array}\right.
$$

Finally, putting the pieces together,

$$
E\left[Y^{2} \mid Y+Z=u\right]=\left\{\begin{array}{l}
1 / 3+(Y+Z) / 2+(Y+Z)^{2} / 3, \text { if } 0<Y+Z<1, \\
1 / 3+(Y+Z) / 2+\left((Y+Z)^{2}-(Y+Z)+1\right) / 3, \text { if } 1<Y+Z<2 .
\end{array}\right.
$$

Figure 1: Finding the density of Y given $Y+Z$.

6. Flipping coins (10\%)

You flip a coin n times. The probability p that a coin toss yields H is uniformly distributed in $[0,1]$. Calculate the variance of the number of $H \mathrm{~s}$ in the n tosses.

Answer. Let X be the number of H s. Then

$$
E(X)=E(E[X \mid p])=E(n p)=n / 2 .
$$

Also,
$E\left(X^{2}\right)=E\left(E\left[X^{2} \mid p\right]\right)=E\left(\operatorname{var}[X \mid p]+E[X \mid p]^{2}\right)=E\left(n p(1-p)+(n p)^{2}\right)=E\left(n p-n p^{2}+n^{2} p^{2}\right)=\frac{n}{2}-\frac{n}{3}+\frac{n^{2}}{3}$.
Hence,

$$
\operatorname{var}(X)=E\left(X^{2}\right)-E(X)^{2}=\left[\frac{n}{2}-\frac{n}{3}+\frac{n^{2}}{3}\right]-\frac{n^{2}}{4}=\frac{n(2+n)}{12} .
$$

7. Jointly Gaussian (15\%)

Let (X, Y) be jointly Gaussian, zero mean, with $\operatorname{var}(X)=4, \operatorname{var}(Y)=1$ and $\operatorname{cov}(X, Y)=1$. Calculate $E\left[X^{2} \mid Y\right]$.

Answer. Recall that

$$
E[X \mid Y]=\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(Y)} Y=Y,
$$

so that $X=Y+Z$ where $Z=X-Y$ is independent of Y. Also, $\operatorname{var}(Z)=E\left((X-Y)^{2}\right)=$ $4-2+1=3$.
Hence, given $Y, X=N(Y, 3)$. Now, if $V=N\left(\mu, \sigma^{2}\right)$, we see that $E\left(V^{2}\right)=\mu^{2}+\sigma^{2}$. It follows that

$$
E\left[X^{2} \mid Y\right]=Y^{2}+3
$$

8. Jointly Gaussian, again (15\%)

Assume that $\left(X, Y_{1}, Y_{2}\right)^{T}=N(\mathbf{m}, \Sigma)$ with

$$
\mathbf{m}=\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right] \text { and } \Sigma=\left[\begin{array}{lll}
6 & 1 & 2 \\
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right]
$$

Calculate $E\left[X \mid Y_{1}, Y_{2}\right]$.
Answer. Let $\mathbf{Y}=\left[Y_{1}, Y_{2}\right]^{T}$. Then

$$
\begin{aligned}
E[X \mid \mathbf{Y}] & =E(X)+\Sigma_{X, \mathbf{Y}} \Sigma_{\mathbf{Y}}^{-1}\{\mathbf{Y}-E(\mathbf{Y})\} \\
& =3+[1,2]\left[\begin{array}{cc}
2 & 1 \\
1 & 1
\end{array}\right]^{-1}\left\{\mathbf{Y}-\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right\} \\
& =3+[1,2]\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right]\left\{\mathbf{Y}-\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right\} \\
& =3+[-1,3]\left\{\mathbf{Y}-\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right\}=8-Y_{1}+3 Y_{2} .
\end{aligned}
$$

9. Detection and Hypothesis Testing (10\%)

Given $X \in\{0,1\}$, the random variable Y is exponentially distributed with rate $3 X+1$ (thus, with mean $\left.(3 X+1)^{-1}\right)$.

1) Assume $P(X=1)=p, P(X=0)=1-p$. Find the MAP estimate of X given Y.
2) Find the MLE of X given Y.
3) Solve the hypothesis testing problem of X given Y with a probability of false alarm at most 10%. That is, find \hat{X} as a function of Y that maximizes $P[\hat{X}=1 \mid X=1]$ subject to $P[\hat{X}=$ $1 \mid X=0] \leq 0.1$.
4) For what value of p does one have the same solution for 1$)$ and 3$)$?

Answer. We start by calculating the likelihood ratio $L(Y)$. Let $f_{1}(y)$ be the density of Y when $X=1$ and $f_{0}(y)$ be its density when $X=0$. We find

$$
L(y)=\frac{f_{1}(y)}{f_{0}(y)}=\frac{4 \exp \{-4 y\}}{1 \exp \{-y\}}=4 \exp \{-3 y\} .
$$

We note that $L(y)$ is decreasing in y, so that $L(Y)>\lambda \Leftrightarrow Y<y_{0}$.

1) $\operatorname{MAP}[X \mid Y]=1\left\{Y<y_{0}\right\}$ where y_{0} is such that $L\left(y_{0}\right)=(1-p) / p$. That is,

$$
4 \exp \left\{-3 y_{0}\right\}=\frac{1-p}{p}
$$

which yields $y_{0}=\frac{1}{3} \ln \left(\frac{4 p}{1-p}\right)$.
2) $M L E[X \mid Y]=1\left\{Y<y_{0}\right\}$ where y_{0} is as before, but with $p=1 / 2$. That is $y_{0}=\frac{1}{3} \ln (4)$.
3) $H T[X \mid Y]=1\left\{Y<y_{0}\right\}$ where y_{0} is such that

$$
0.1=P\left[Y \leq y_{0} \mid X=0\right]=1-\exp \left\{-y_{0}\right\} .
$$

Hence, $y_{0}=-\ln (0.9)$.
4) The solutions of 1) and 3) coincide if

$$
\frac{1}{3} \ln \left(\frac{4 p}{1-p}\right)=-\ln (0.9)
$$

which is seen to happen if $p=1 /\left(1+4(0.9)^{3}\right) \approx 0.255$.

