Department of EECS - University of California at Berkeley EECS 126 - Probability and Random Processes - Fall 2008

Midterm 2: 11/18/2008

Name (Last, First):
SID:

1. Definition ($\mathbf{1 0 \%}$)

Define "Jointly Gaussian Random Variables"

2. Orthogonality ($\mathbf{1 0 \%}$)

Give an example of a two orthogonal random variables that are not independent.

3. Gaussian but not jointly (10%)

Give an example of two $N(0,1)$ random variables that are not jointly Gaussian.

4. Conditional Expectation (10\%)

Is it true that $E[X \mid Y]=0$ implies that X and Y are uncorrelated? Prove or provide a counterexample.
5. Conditional Expectation, again (10\%)

Let X, Y, Z be i.i.d. and uniformly distributed in $[0,1]$. Calculate $E\left[(X+Y)^{2} \mid Y+Z\right]$.

6. Flipping coins (10%)

You flip a coin n times. The probability p that a coin toss yields H is uniformly distributed in $[0,1]$. Calculate the variance of the number of $H \mathrm{~s}$ in the n tosses.

7. Jointly Gaussian (15\%)

Let (X, Y) be jointly Gaussian, zero mean, with $\operatorname{var}(X)=4, \operatorname{var}(Y)=1$ and $\operatorname{cov}(X, Y)=1$. Calculate $E\left[X^{2} \mid Y\right]$.

8. Jointly Gaussian, again (15\%)

Assume that $\left(X, Y_{1}, Y_{2}\right)^{T}=N(\mathbf{m}, \Sigma)$ with

$$
\mathbf{m}=\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right] \text { and } \Sigma=\left[\begin{array}{lll}
6 & 1 & 2 \\
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right]
$$

Calculate $E\left[X \mid Y_{1}, Y_{2}\right]$.

9. Detection and Hypothesis Testing (10\%)

Given $X \in\{0,1\}$, the random variable Y is exponentially distributed with rate $3 X+1$ (thus, with mean $\left.(3 X+1)^{-1}\right)$.

1) Assume $P(X=1)=p, P(X=0)=1-p$. Find the MAP estimate of X given Y.
2) Find the MLE of X given Y.
3) Solve the hypothesis testing problem of X given Y with a probability of false alarm at most 10%. That is, find \hat{X} as a function of Y that maximizes $P[\hat{X}=1 \mid X=1]$ subject to $P[\hat{X}=$ $1 \mid X=0] \leq 0.1$.
4) For what value of p does one have the same solution for 1) and 3$)$?
